Search results for: modeling platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5850

Search results for: modeling platform

720 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing

Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto

Abstract:

Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.

Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence

Procedia PDF Downloads 384
719 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri

Authors: Shishay Kidanu, Abdullah Alhaj

Abstract:

Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.

Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri

Procedia PDF Downloads 76
718 Web-Based Instructional Program to Improve Professional Development: Recommendations and Standards for Radioactive Facilities in Brazil

Authors: Denise Levy, Gian M. A. A. Sordi

Abstract:

This web based project focuses on continuing corporate education and improving workers' skills in Brazilian radioactive facilities throughout the country. The potential of Information and Communication Technologies (ICTs) shall contribute to improve the global communication in this very large country, where it is a strong challenge to ensure high quality professional information to as many people as possible. The main objective of this system is to provide Brazilian radioactive facilities a complete web-based repository - in Portuguese - for research, consultation and information, offering conditions for learning and improving professional and personal skills. UNIPRORAD is a web based system to offer unified programs and inter-related information about radiological protection programs. The content includes the best practices for radioactive facilities in order to meet both national standards and international recommendations published by different organizations over the past decades: International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA) and National Nuclear Energy Commission (CNEN). The website counts on concepts, definitions and theory about optimization and ionizing radiation monitoring procedures. Moreover, the content presents further discussions related to some national and international recommendations, such as potential exposure, which is currently one of the most important research fields in radiological protection. Only two publications of ICRP develop expressively the issue and there is still a lack of knowledge of fail probabilities, for there are still uncertainties to find effective paths to quantify probabilistically the occurrence of potential exposures and the probabilities to reach a certain level of dose. To respond to this challenge, this project discusses and introduces potential exposures in a more quantitative way than national and international recommendations. Articulating ICRP and AIEA valid recommendations and official reports, in addition to scientific papers published in major international congresses, the website discusses and suggests a number of effective actions towards safety which can be incorporated into labor practice. The WEB platform was created according to corporate public needs, taking into account the development of a robust but flexible system, which can be easily adapted to future demands. ICTs provide a vast array of new communication capabilities and allow to spread information to as many people as possible at low costs and high quality communication. This initiative shall provide opportunities for employees to increase professional skills, stimulating development in this large country where it is an enormous challenge to ensure effective and updated information to geographically distant facilities, minimizing costs and optimizing results.

Keywords: distance learning, information and communication technology, nuclear science, radioactive facilities

Procedia PDF Downloads 203
717 Distant Speech Recognition Using Laser Doppler Vibrometer

Authors: Yunbin Deng

Abstract:

Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.

Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR

Procedia PDF Downloads 181
716 Relative Expression and Detection of MUB Adhesion Domains and Plantaricin-Like Bacteriocin among Probiotic Lactobacillus plantarum-Group Strains Isolated from Fermented Foods

Authors: Sundru Manjulata Devi, Prakash M. Halami

Abstract:

The immemorial use of fermented foods from vegetables, dairy and other biological sources are of great demand in India because of their health benefits. However, the diversity of Lactobacillus plantarum group (LPG) of vegetable origin has not been revealed yet, particularly with reference to their probiotic functionalities. In the present study, the different species of probiotic Lactobacillus plantarum group (LPG) i.e., L. plantarum subsp. plantarum MTCC 5422 (from fermented cereals), L. plantarum subsp. argentoratensis FG16 (from fermented bamboo shoot) and L. paraplantarum MTCC 9483 (from fermented gundruk) (as characterized by multiplex recA PCR assay) were considered to investigate their relative expression of MUB domains of mub gene (mucin binding protein) by Real time PCR. Initially, the allelic variation in the mub gene was assessed and found to encode three different variants (Type I, II and III). All the three types had 8, 9 and 10 MUB domains respectively (as analysed by Pfam database) and were found to be responsible for adhesion of bacteria to the host intestinal epithelial cells. These domains either get inserted or deleted during speciation or evolutionary events and lead to divergence. The reverse transcriptase qPCR analysis with mubLPF1+R1 primer pair supported variation in amplicon sizes with 300, 500 and 700 bp among different LPG strains. The relative expression of these MUB domains significantly unregulated in the presence of 1% mucin in overnight grown cultures. Simultaneously, the mub gene expressed efficiently by 7 fold in the culture L. paraplantarum MTCC 9483 with 10 MUB domains. An increase in the expression levels for L. plantarum subsp. plantarum MTCC 5422 and L. plantarum subsp. argentoratensis FG16 (MCC 2974) with 9 and 8 repetitive domains was around 4 and 2 fold, respectively. The detection and expression of an integrase (int) gene in the upstream region of mub gene reveals the excision and integration of these repetitive domains. Concurrently, an in vitro adhesion assay to mucin and exclusion of pathogens (such as Listeria monocytogenes and Micrococcus leuteus) was investigated and observed that the L. paraplantarum MTCC 9483 with more adhesion domains has more ability to adhere to mucin and inhibited the growth of pathogens. The production and expression of plantaricin-like bacteriocin (plnNC8 type) in MTCC 9483 suggests the pathogen inhibition. Hence, the expression of MUB domains can act as potential biomarkers in the screening of a novel probiotic LPG strain with adherence property. The present study provides a platform for an easy, rapid, less time consuming, low-cost methodology for the detection of potential probiotic bacteria. It was known that the traditional practices followed in the preparation of fermented bamboo shoots/gundruk/cereals of Indian foods contain different kinds of neutraceuticals for functional food and novel compounds with health promoting factors. In future, a detailed study of these food products can add more nutritive value, consumption and suitable for commercialization.

Keywords: adhesion gene, fermented foods, MUB domains, probiotics

Procedia PDF Downloads 272
715 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling

Procedia PDF Downloads 360
714 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 434
713 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 174
712 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays

Authors: Maher Z. Mohammed, Barry G. Clarke

Abstract:

As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.

Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio

Procedia PDF Downloads 174
711 Academic Staff Development: A Lever to Address the Challenges of the 21st Century University Classroom

Authors: Severino Machingambi

Abstract:

Most academics entering Higher education as lecturers in South Africa do not have qualifications in Education or teaching. This creates serious problems since they are not sufficiently equipped with pedagogical approaches and theories that inform their facilitation of learning strategies. This, arguably, is one of the reasons why higher education institutions are experiencing high student failure rate. In order to mitigate this problem, it is critical that higher education institutions devise internal academic staff development programmes to capacitate academics with pedagogical skills and competencies so as to enhance the quality of student learning. This paper reported on how the Teaching and Learning Development Centre of a university used design-based research methodology to conceptualise and implement an academic staff development programme for new academics at a university of technology. This approach revolves around the designing, testing and refining of an educational intervention. Design-based research is an important methodology for understanding how, when, and why educational innovations work in practice. The need for a professional development course for academics arose due to the fact that most academics at the university did not have teaching qualifications and many of them were employed straight from industry with little understanding of pedagogical approaches. This paper examines three key aspects of the programme namely, the preliminary phase, the teaching experiment and the retrospective analysis. The preliminary phase is the stage in which the problem identification takes place. The problem that this research sought to address relates to the unsatisfactory academic performance of the majority of the students in the institution. It was therefore hypothesized that the problem could be dealt with by professionalising new academics through engagement in an academic staff development programme. The teaching experiment phase afforded researchers and participants in the programme the opportunity to test and refine the proposed intervention and the design principles upon which it was based. The teaching experiment phase revolved around the testing of the new academics professional development programme. This phase created a platform for researchers and academics in the programme to experiment with various activities and instructional strategies such as case studies, observations, discussions and portfolio building. The teaching experiment phase was followed by the retrospective analysis stage in which the research team looked back and tried to give a trustworthy account of the teaching/learning process that had taken place. A questionnaire and focus group discussions were used to collect data from participants that helped to evaluate the programme and its implementation. One of the findings of this study was that academics joining university really need an academic induction programme that inducts them into the discourse of teaching and learning. The study also revealed that existing academics can be placed on formal study programmes in which they acquire educational qualifications with a view to equip them with useful classroom discourses. The study, therefore, concludes that new and existing academics in universities should be supported through induction programmes and placement on formal studies in teaching and learning so that they are capacitated as facilitators of learning.

Keywords: academic staff, pedagogy, programme, staff development

Procedia PDF Downloads 137
710 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 97
709 Associations Between Pornography Use Motivations and Sexual Satisfaction in Gender Diverse and Cisgender Individuals in the 43-Country International Sex Survey

Authors: Aurélie Michaud, Émilie Gaudet, Mónika Koós, Léna Nagy, Zsolt Demetrovics, Shane W. Kraus, Marc N. Potenza, Beáta Bőthe

Abstract:

Pornography use is prevalent among adults worldwide. Prior studies have assessed the associations between pornography use frequency and sexual satisfaction, in cisgender and heterosexual individuals, with mixed results. However, measuring pornography use solely by pornography use frequency is problematic, as it can lead to disregarding important contextual factors that may be related to pornography use’s potential effects. Pornography use motivations (PUMs) represent key predictors of sexual behaviors. Yet, their associations with different indicators of sexual wellbeing have yet to be extensively studied. This cross-cultural study examined the links between the eight PUMs most often reported in the general population (i.e. sexual pleasure, sexual curiosity, emotional distraction or suppression, fantasy, stress reduction, boredom avoidance, lack of sexual satisfaction, and self-exploration) and sexual satisfaction in gender diverse and cisgender individuals. Given the lack of scientific data on associations between individuals’ PUMs and sexual satisfaction, these links were examined in an exploratory manner. A total of 43 countries from five continents were included in the International Sex Survey (ISS). A secure online platform was used to collect self-report, anonymous data from 82,243 participants (39.6% men, 57% women, 3.4% gender diverse individuals; M = 32.4 years, SD = 12.5). Gender-based differences in levels of sexual pleasure, sexual curiosity, emotional distraction, fantasy, stress reduction, boredom avoidance, lack of sexual satisfaction, and self-exploration PUMs were examined using one-way ANOVAs. Then, for each gender group, the associations between each PUM and sexual satisfaction were examined using multiple linear regression, controlling for frequency of masturbation. One-way ANOVAs indicated significant differences between men, women, and gender diverse individuals on all PUMs. For sexual pleasure, sexual curiosity, fantasy, boredom avoidance, lack of sexual satisfaction, emotional distraction, and stress reduction PUMs, men showed the highest scores, followed by gender-diverse individuals, and women. However, for self-exploration, gender-diverse individuals had higher average scores than men. For all PUMs, women’s average scores were the lowest. After controlling for frequency of masturbation, for all genders, sexual pleasure, sexual curiosity and boredom avoidance were significant positive predictors of sexual satisfaction, while lack of sexual satisfaction PUM was a significant negative predictor. Fantasy, stress reduction and self-exploration PUMs were positive significant predictors of sexual satisfaction, and fantasy was a negative significant predictor, but only for women. Findings highlight important gender differences in regards to the main motivations underlying pornography use and their relations to sexual satisfaction. While men and gender diverse individuals show similar motivation profiles, woman report a particularly unique experience, with fantasy, stress reduction and self-exploration being associated to their sexual satisfaction. This work outlines the importance of considering the role of pornography use motivations when studying the links between pornography viewing and sexual well-being, and may provide basis for gender-based considerations when working with individuals seeking help for their pornography use or sexual satisfaction.

Keywords: pornography, sexual satifsaction, cross-cultural, gender diversity

Procedia PDF Downloads 109
708 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 196
707 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 91
706 High Prevalence of Asymptomatic Dengue among Healthy Adults in Southern Malaysia: A Longitudinal Prospective Study

Authors: Nowrozy Jahan, Sharifah Syed Hassan, Daniel Reidpath

Abstract:

In recent decades, Malaysia has become a dengue hyper-endemic country with the co-circulation of the four-dengue virus (DENV) serotypes. The number of symptomatic dengue cases is maintaining an increasing trend since 1995 and sharply increased in 2014. The four DENV serotypes have been co-circulating since 2000, and this pattern of cyclical dominance of sub-types contributed to the development of frequent major dengue epidemics in Malaysia. Since 2012, different Malaysian state was dominated by different serotypes. The study aims to estimate the burden of asymptomatic dengue in a healthy adult population which may act as a potential source of further symptomatic dengue infection. It also aims to identify the predominant DENV serotypes which are circulating at the community level. A longitudinal prospective community-based study was conducted in the Segamat district of Johor State, southern part of Malaysia where the number of reported dengue cases has steadily increased over the last three years (2013-2015). More specifically, the study was conducted in and around of Kampung Abdullah of Sungai Segamat sub-district which was identified as a hot spot area over the period of 2013-2015. This community-based study has been conducted by Southeast Asia Community Observatory (SEACO), an ISO-certified research platform in collaboration of the Ministry of Health Malaysia and Monash University Malaysia. It was conducted from May 2015 to May 2016. In this study, 277 apparently looking healthy respondents joined who were followed up as a cohort for four times during the one-year study period. Blood was collected to detect the serological marker of dengue at each round of follow-up. Among 277, 184 respondents (66%) joined all four rounds. Half of the study respondents were at the age-group of 45-64 years, slightly more than half of the respondents (59%) were female, and the most (69%) of them were Malay; only 35% lived in urban areas. During the baseline, the study found a very high prevalence of exposure to dengue virus; 89% of the study respondents had serological evidence of previous asymptomatic dengue infection; the majority of them did not know about it as they did not develop any symptom of dengue fever; only 13% knew as they developed symptoms. At the end of the one-year study period, 19% of respondents developed recent secondary dengue infection which was also identified by the serological marker as they did not develop any symptom (asymptomatic cases). The asymptomatic dengue incidence was higher during the rainy season compared to the dry season. All four dengue serotypes were identified in the serum of the infected respondents; among them, DENV-2 was the most prominent. Further genetic analysis is going on to identify the association of HLA-B*46 and HLA-DRB1*08 with dengue resistance. This study provides evidence for the policymakers to be aware of asymptomatic dengue infection, to develop a useful tool for raising awareness about asymptomatic dengue infection among the general population, to monitor the community participation to strengthen the individual and community level dengue prevention and control measures when neither there is vaccine nor particular treatment for dengue.

Keywords: asymptomatic, dengue, health adults, prospective study

Procedia PDF Downloads 133
705 Preparing Young Adults with Disabilities for Lifelong Inclusivity through a College Level Mentor Program Using Technology: An Exploratory Study

Authors: Jenn Gallup, Onur Kocaoz, Onder Islek

Abstract:

In their pursuit of postsecondary transitions, individuals with disabilities tend to experience, academic, behavioral, and emotional challenges to a greater extent than their typically developing peers. These challenges result in lower rates of graduation, employment, independent living, and participation in college than their peers without disabilities. The lack of friendships and support systems has had a negative impact on those with a disability transitioning to postsecondary settings to include, employment, independent living, and university settings. Establishing friendships and support systems early on is an indicator of potential success and persistence in postsecondary education, employment, and independent living for typically developing college students. It is evident that a deficit in friendships and supports is a key deficit also for individuals with disabilities. To address the specific needs of this group, a mentor program was developed for a transition program held at the university for youth aged 18-21. Pre-service teachers enrolled in the special education program engaged with youth in the transition program in a variety of activities on campus. The mentorship program had two purposes: to assist young adults with disabilities who were transitioning to a workforce setting to help increase social skills, self-advocacy, supports and friendships, and confidence; and to give their peers without disabilities who were enrolled in a secondary special education course as a pre-service teacher the experience of interacting with and forming friendships with peers who had a disability for the purposes of career development. Additionally, according to researchers mobile technology has created a virtual world of equality and opportunity for a large segment of the population that was once marginalized due to physical and cognitive impairments. All of the participants had access to smart phones; therefore, technology was explored during this study to determine if it could be used as a compensatory tool to allow the young adults with disabilities to do things that otherwise would have been difficult because of their disabilities. Additionally, all participants were asked to incorporate technology such as smart phones to communicate beyond the activities, collaborate using virtual platform games which would support and promote social skills, soft-skills, socialization, and relationships. The findings of this study confirmed that a peer mentorship program that harnessed the power of technology supported outcomes specific to young adults with and without disabilities. Mobile technology and virtual game-based platforms, were identified as a significant contributor to personal, academic, and career growth for both groups. The technology encouraged friendships, provided an avenue for rich social interactions, and increased soft-skills. Results will be shared along with the development of the program and potential implications to the field.

Keywords: career outcomes, mentorship, soft-skills, technology, transition

Procedia PDF Downloads 173
704 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 195
703 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 162
702 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 187
701 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 25
700 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 126
699 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 414
698 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 64
697 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 138
696 Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives

Authors: Geetanjali Sachdev

Abstract:

This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture.

Keywords: art and design pedagogy, decoration, plant motifs, traditional art and craft

Procedia PDF Downloads 90
695 The Mediating Role of Social Connectivity in the Effect of Positive Personality and Alexithymia on Life Satisfaction: Analysis Based on Structural Equation Model

Authors: Yulin Zhang, Kaixi Dong, Guozhen Zhao

Abstract:

Background: Different levels of life satisfaction are associated with some individual differences. Understanding the mechanism between them will help to enhance an individual’s well-being. On the one hand, traditional personality such as extraversion has been considered as the most stable and effective factor in predicting life satisfaction to the author’s best knowledge. On the other, individual emotional difference, such as alexithymia (difficulties identifying and describing one’s own feelings), is also closely related to life satisfaction. With the development of positive psychology, positive personalities such as virtues attract wide attention. And according to the broaden-and-build theory, social connectivity may mediate between emotion and life satisfaction. Therefore, the current study aims to explore the mediating role of social connectivity in the effect of positive personality and alexithymia on life satisfaction. Method: This study was conducted with 318 healthy Chinese college students whose age range from 18 to 30. Positive personality (including interpersonal, vitality, and cautiousness) was measured by the Chinese version of Values in Action Inventory of Strengths (VIA-IS). Alexithymia was measured by the Toronto Alexithymia Scale (TAS), and life satisfaction was measured by Satisfaction With Life Scale (SWLS). And social connectivity was measured by six items which have been used in previous studies. Each scale showed high reliability and validity. The mediating model was examined in Mplus 7.2 within a structural equation modeling (SEM) framework. Findings: The model fitted well and results revealed that both positive personality (95% confidence interval of indirect effect was [0.023, 0.097]) and alexithymia (95% confidence interval of indirect effect was [-0.270, -0.089]) predicted life satisfaction level significantly through social connectivity. Also, only positive personality significantly and directly predicted life satisfaction compared to alexithymia (95% confidence interval of direct effect was [0.109, 0.260]). Conclusion: Alexithymia predicts life satisfaction only through social connectivity, which emphasizes the importance of social bonding in enhancing the well-being of Chinese college students with alexithymia. And the positive personality can predict life satisfaction directly or through social connectivity, which provides implications for enhancing the well-being of Chinese college students by cultivating their virtue and positive psychological quality.

Keywords: alexithymia, life satisfaction, positive personality, social connectivity

Procedia PDF Downloads 171
694 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 210
693 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 222
692 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 118
691 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 141