Search results for: achine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7240

Search results for: achine learning

2110 Using Design Sprint For Software Engineering Undergraduate Student Projects: A Method Paper

Authors: Sobhani U. Pilapitiya, Tharanga Peiris

Abstract:

Software Engineering curriculums generally consist of industry-based practices such as project-based learning (PBL) which mainly focuses on efficient and innovative product development. These approaches can be tailored and used in project-based modules in software engineering curriculums. However, there are very limited attempts in the area especially related to the Sri Lankan context. This paper describes a tailored pedagogical approach and its results of using design sprint which can be used for project-based modules in SE curriculums. A controlled group of second-year software engineering students was selected for the study. The study results indicate that 100% of students agreed that the Design Sprint approach is effective in group-based projects and 83% of students stated that it minimized the re-work compared to traditional project approaches. The tailored process was effective, easy to implement and produced desired results at the end of the session while providing students an enjoyable experience.

Keywords: design sprint, PBL, software engineering, curriculum

Procedia PDF Downloads 208
2109 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 181
2108 The Efficacy of a Student Designed and Led Near Peer Anatomy Teaching

Authors: Mark Heads, Carrie Adamson

Abstract:

Introduction This study evaluated the educational merits of the teaching activities of ‘Sheffield Anatomy Society,’ a student society with minimal faculty oversight which delivers near peer teaching in a range of formats to support students in their revision. Near peer, teaching is defined as teaching delivered by more senior students who have themselves recently completed the course content. This study was conducted between early April and late May 2022. This programme aims to improve student knowledge of anatomy, increase student confidence in their anatomy learning and cultivate a sense of community. The sessions were delivered by more senior medical students and by medical students undertaking an intercalated Master's degree in Human Anatomy with Education. Background: The majority of studies concerning near peer teaching focus on faculty designed programmes. Few studies have examined entirely student led near peer teaching of anatomy. Existing studies have been favourable but have limited qualitative examination of the benefits and weaknesses of near peer teaching. Various drawbacks have been proposed in the literature but not extensively investigated in practice. This study examines student led near peer anatomy teaching across a range of formats and considers these proposed criticisms. Methods: The teaching series consisted of 11 online lectures, a small group teaching session, two in person mock spotter examinations, and an online mock examination. Feedback forms were given for each session, and follow up interviews were conducted. Thematic analysis utilising an interpretivist epistemology was conducted on the feedback form responses and interview transcripts. Findings: 207 first year medical students, 34 second year biomedical science students, and 12 third year biomedical science students completed one or more feedback forms following these sessions, with 875 responses being collected in total. Six interviews were conducted. 99.5% of respondents said that they would recommend these sessions to other students. The quantitative results ranged from a mean of 4.6-4.8/5 per session when asked to rate how useful the students found it. Qualitative: analysis yielded numerous strengths and some weaknesses of the programme. The most commonly cited strength was that students found the explanations readily comprehensible. Students also praised the interactive nature of the sessions, with students frequently saying they felt more able to engage with interactive elements and ask questions in these sessions than in faculty teaching. Students did, however, raise some issues. The most common drawback students mentioned was a desire for more help preparing for their examinations, especially more examination style questions. Criticisms of the teaching itself were less prominent and typically reflected time constraints and limited resources. Conclusions : This study suggests student organised near peer teaching, utilising interactive online lectures, small group teaching, and mock examinations, can be an effective method for supporting students studying anatomy. Students reported improvements in their knowledge as a result of the sessions, greater confidence approaching their examinations, and this programme has helped foster an environment where students feel able to ask questions outside of sessions and even get involved with teaching themselves the following academic year.

Keywords: medical education, near peer teaching, anatomy teaching, online learning

Procedia PDF Downloads 66
2107 The Effects of Infographics as a Supplementary Tool in Promoting Academic Reading Skill in an EFL Class

Authors: Niracha Chompurach, Dararat Khampusaen

Abstract:

EFL students have to be able to synthesize the texts they are reading critically to compose and connect the information. This study focuses on the effects of the application of Infographics as a supplementary tool to improve Thai EFL students’ Academic reading skills. Infographics are graphic visual representations of information, data, and knowledge offering students to work on gathering multiple types of information, such as pictures, texts, graphs, mapping, and charts. The study aims to investigate if the Infographics as a supplementary tool in academic reading lessons can make a difference in students’ reading skills, and the students’ opinions toward the application of infographics as a reading tool. The participants of this study were 3rd year Thai EFL Khon Kaen University students who took English Academic Reading course. This study employed Infographics assignments, Infographics rubric, and Gucus group interview. This study would advantage for both EFL teachers and students as a means to engage the students to handle the larger load of and represents the complex information in visible and comprehensible way.

Keywords: EFL, e-learning, infographics, language education

Procedia PDF Downloads 169
2106 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts

Authors: Josephine Shamash, Stuart Smith

Abstract:

We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.

Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching

Procedia PDF Downloads 133
2105 Literature for Learning: Cultivating Global Competence in the Classroom

Authors: April Mattix Foster, Kathleen A. Ramos, Sarah Rich, Rebecca Eisenberg, Lisa Dornan

Abstract:

As the number of children from immigrant and refugee backgrounds in our schools continues to grow, the need to cultivate antiracist educators is crucial. This e-poster outlines the design of online university course modules, funded by the Longview Foundation, designed to support pre- and in-service educators in developing great awareness of, empathy for, and advocacy with immigrant and refugee students in the classroom. These modules guide educators in using children’s and adolescent literature that highlights the lived experiences of immigrant and refugee families, utilizing scaffolded reading and thinking protocols as a model for encouraging empathy and global competence in young learners. Educators reported several benefits of using the modules and curated literature, including greater awareness of the significance of diverse literature, deeper self-reflection and empathy, and stronger connections to classroom practice—ultimately benefiting both educators and their students.

Keywords: antiracist, children’s literature, global competence, empathy, self-reflection

Procedia PDF Downloads 29
2104 Thinking about Drawing: The Evolution of Architectural Education in China After 1949

Authors: Wang Yanze

Abstract:

Architectural design results from the interaction between space and drawing. Stemming from the Beaux-Arts architectural education, drawing kept its dominant position in teaching and learning process for centuries. However, this education system is being challenged in the present time due to the development of the times. Based on the architectural education of China after 1949, a brief introduction to the history of the evolution of the design concept and drawing is given in this paper. Illustrating with the reference to the students’ works in Nanjing Institute of Technology, the predecessor of Southeast University, in China, the paper analyses the relationship between concept and representation, as well as the participation of Space, the modernism discourse. This process contains the transmission of the character of architects, the renovation of drawing skills and the profound social background. With different purposes, the emphasis on representation tends to be combined with the operation on space, and the role of drawing in architectural design process also changes. Therefore, based on the continuity of the traditional architectural education system, the discussion on the “Drawing of Space” in contemporary education system is proposed.

Keywords: architectural education, beaux-arts, drawing, modernism

Procedia PDF Downloads 487
2103 Language Skills in the Emergent Literacy of Spanish-Speaking Children with Autism Spectrum Disorders

Authors: Adriana Salgado, Sandra Castaneda, Ivan Perez

Abstract:

Learning to read and write is a complex process involving several cognitive skills, contextual, and cultural environments. The basis of this development is linguistic skills, such as the ability to name and understand vocabulary, retell a story, phonological awareness, letter knowledge, among others. In children with autism spectrum disorder (ASD), one of the main concerns is related to language disorders. Nevertheless, most of the children with ASD are able to decode written information but have difficulties in reading comprehension. The research of these processes in the Spanish-speaking population is limited. However, the increasing prevalence of this diagnosis (1 in 115 children) in Mexico has implications at different levels. Educational research is an important area of interest in ASD children, such as emergent literacy. Reading and writing expand the possibilities of academic, cultural, and social information access. Taking this information into account, the objective of this research was to identify the relationship between language skills, alphabet knowledge, phonological awareness, and early reading and writing in ASD Spanish-speaking children. The method used for this research was based on tasks that were selected, adapted and in some cases designed to measure initial reading and writing, as well as language skills (naming, receptive vocabulary, and narrative skills), phonological awareness (similar phonological word pairs, beginning sound awareness and spelling) and letter knowledge, in a sample of 45 children (38 boys and 7 girls) with prior diagnosis of ASD. Descriptive analyses, as well as bivariate correlations, cluster analysis, and canonical correspondence, were obtained for the data results. Results showed that variability was large; however, it was possible to characterize the sample in low, medium, and high score groups regarding children performance. The low score group (46.7% of the sample), had a null or deficient performance in language skills and phonological awareness, some could identify up to five letters of the alphabet, showed no early reading skills but they could scribble. The middle score group was characterized by a highly variable performance in different tasks, with better language skills in receptive and naming vocabulary, some narrative, letter knowledge, and phonological awareness (beginning sound awareness) skills. The high score group, (24.4% of the sample) had the best performance in language skills in relation to the sample data, as well as in the rest of the measured skills. Finally, scores were canonically correlated between naming, receptive vocabulary, narrative, phonological awareness, letter knowledge and initial learning of reading and writing skills for the high score group and letter knowledge, naming and receptive vocabulary for the lower score group, which is consistent with previous research in typical and ASD children. In conclusion, the obtained data is consistent with previous studies. Despite large variability, it was possible to identify performance profiles and relations based on linguistic, phonological awareness, and letter knowledge skills. These skills were predictor variables of the initial development of reading and writing. The above has implications for a future program and strategies development that may benefit the acquisition of reading and writing in ASD children.

Keywords: autism, autism spectrum disorders, early literacy, emergent literacy

Procedia PDF Downloads 145
2102 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)

Procedia PDF Downloads 276
2101 Modeling Child Development Factors for the Early Introduction of ICTs in Schools

Authors: K. E. Oyetade, S. D. Eyono Obono

Abstract:

One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.

Keywords: child development factors, child development theories, ICTs, theory

Procedia PDF Downloads 417
2100 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 201
2099 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 92
2098 Elitism: Navigating Professional Diversity Barriers

Authors: Rachel Nir, Tina Mckee

Abstract:

In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.

Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies

Procedia PDF Downloads 241
2097 The Concept of Community Participation and Identified Tertiary Education Problems, Strategies and Methods

Authors: Ada Adoga James

Abstract:

This paper discussed the concept of community participation and identified tertiary education problems; strategies and methods communities could be involved to reduce conflict witnessed in our tertiary institutions of learning due to government inability to fund education. The paper pointed out that community participation through the use of Parent Teachers Association (PTA), age grade, traditional leaders, village based associations, religious and political organs could be sensitized to raise financial resources. The paper identified different sources of conflicts, the outcome of which causes prolonged academic activities, destruction of lives and properties and in some cased render school environment completely insecure for serious academic activities. It recommends involvement of community participation in assisting government, proper handling of tertiary institutions in management, and more democratic procedure in conflict resolution like cordial relationship between staff, students and trade unions in decision making process.

Keywords: community, conflict resolution, tertiary education, psychology, psychiatry

Procedia PDF Downloads 485
2096 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 107
2095 Educational Video Capsules for Fostering Teachers Creativity

Authors: Martha Salinas, Valkyria Bernal

Abstract:

Creativity is a possible response to the profound social, economic, and global changes society is living and education is the source to develop this kind of capacity. However, institutional pressures often prevent teachers from engaging in creative teaching practices and make innovation not the main curricular focus when building learning scenarios and experiences. This study proposes and validates the use of a prototype of Educative Video – Capsules from the perspective of teacher training, presenting the different stages of design, the content plan, as well as the influences of its components and characteristics from the perspective of creativity. The paper presents literature findings of the factors that influence the innovative behavior of teachers, the beliefs of teachers about creativity and its nature, as well as the creative pedagogies that have generated better results. The results show that the disposition of teachers towards creative pedagogies improves significantly with the use of a tool that is based on the principles of microlearning and is developed in a non-academic, autonomous, and non-imposed family environment as traditional teacher training processes usually occur.

Keywords: educational innovation, resistance to innovation, creativity, creative pedagogy

Procedia PDF Downloads 159
2094 Mobile Device Applications in Physical Education: Investigating New Pedagogical Possibilities

Authors: Danica Vidotto

Abstract:

Digital technology is continuing to disrupt and challenge local conventions of teaching and education. As mobile devices continue to make their way into contemporary classrooms, educators need new pedagogies incorporating information communication technology to help reform the learning environment. In physical education, however, this can seem controversial as physical inactivity is often related to an excess of screen-time. This qualitative research project is an investigation on how physical educators use mobile device applications (apps) in their pedagogy and to what end. A comprehensive literature review is included to examine and engage current academic research of new pedagogies and technology, and their relevance to physical activity. Data were collected through five semi-structured interviews resulting in three overarching themes; i) changing pedagogies in physical education; ii) the perceived benefits and experienced challenges of using apps; and iii) apps, physical activity, and physical education. This study concludes with a discussion of the findings engaging the literature, discussing the implications of findings, and recommendations for future research.

Keywords: applications (apps), mobile devices, new pedagogies, physical education

Procedia PDF Downloads 196
2093 The Images of Japan and the Japanese People: A Case of Japanese as a Foreign Language Students in Portugal

Authors: Tomoko Yaginuma, Rosa Cabecinhas

Abstract:

Recently, the studies of the images about Japan and/or the Japanese people have been done in a Japanese language education context since the number of the students of Japanese as a Foreign Language (JFL) has been increasing worldwide, including in Portugal. It has been claimed that one of the reasons for this increase is the current popularity of Japanese pop-culture, namely anime (Japanese animations) and manga (Japanese visual novels), among young students. In the present study, the images about Japan and the Japanese held by JFL students in Portugal were examined by a questionnaire survey. The JFL students in higher education in Portugal (N=296) were asked to answer, among the other questions, their degree of agreement (using a Likert scale) with 24 pre-defined descriptions about the Japanese, which appear as relevant in a qualitative pilot study conducted before. The results show that the image of Japanese people by Portuguese JFL students is stressed around four dimensions: 1) diligence, 2) kindness, 3) conservativeness and 4) innovativeness. The students considered anime was the main source of information about the Japanese people and culture and anime was also strongly associated with the students’ interests in learning Japanese language.

Keywords: anime, cultural studies, images about Japan and Japanese people, Portugal

Procedia PDF Downloads 153
2092 The Effectiveness of Multi-Media Experiential Training Programme on Advance Care Planning in Enhancing Acute Care Nurses’ Knowledge and Confidence in Advance Care Planning Discussion: An Interim Report

Authors: Carmen W. H. Chan, Helen Y. L. Chan, Kai Chow Choi, Ka Ming Chow, Cecilia W. M. Kwan, Nancy H. Y. Ng, Jackie Robinson

Abstract:

Introduction: In Hong Kong, a significant number of deaths occur in acute care wards, which requires nurses in these settings to provide end-of-life care and lead ACP implementation. However, nurses in these settings, in fact, have very low-level involvement in ACP discussions because of limited training in ACP conversations. Objective: This study aims to assess the impact of a multi-media experiential ACP (MEACP) training program, which is guided by the experiential learning model and theory of planned behaviour, on nurses' knowledge and confidence in assisting patients with ACP. Methodology: The study utilizes a cluster randomized controlled trial with a 12-week follow-up. Eligible nurses working in acute care hospital wards are randomly assigned at the ward level, in a 1:1 ratio, to either the control group (no ACP education) or the intervention group (4-week MEACP training program). The training programme includes training through a webpage and mobile application, as well as a face-to-face training workshop with enhanced lectures and role play, which is based on the Theory of Planned Behavior and Kolb's Experiential Learning Model. Questionnaires were distributed to assess nurses' knowledge (a 10-item true/false questionnaire) and level of confidence (five-point Likert scale) in ACP at baseline (T0), four weeks after the baseline assessment (T1), and 12 weeks after T1 (T2). In this interim report, data analysis was mainly descriptive in nature. Result: The interim report focuses on the preliminary results of 165 nurses at T0 (Control: 74, Intervention: 91) over a 5-month period, 69 nurses from the control group who completed the 4-week follow-up and 65 nurses from the intervention group who completed the 4-week MEACP training program at T1. The preliminary attrition rate is 6.8% and 28.6% for the control and intervention groups, respectively, as some nurses did not complete the whole set of online modules. At baseline, the two groups were generally homogeneous in terms of their years of nursing practice, weekly working hours, working title, and level of education, as well as ACP knowledge and confidence levels. The proportion of nurses who answered all ten knowledge questions correctly increased from 13.8% (T0) to 66.2% (T1) for the intervention group and from 13% (T0) to 20.3% (T1) for the control group. The nurses in the intervention group answered an average of 7.57 and 9.43 questions correctly at T0 and T1, respectively. They showed a greater improvement in the knowledge assessment at T1 with respect to T0 when compared with their counterparts in the control group (mean difference of change score, Δ=1.22). They also exhibited a greater gain in level of confidence at T1 compared to their colleagues in the control group (Δ=0.91). T2 data is yet available. Conclusion: The prevalence of nurses engaging in ACP and their level of knowledge about ACP in Hong Kong is low. The MEACP training program can enrich nurses by providing them with more knowledge about ACP and increasing their confidence in conducting ACP.

Keywords: advance directive, advance care planning, confidence, knowledge, multi-media experiential, randomised control trial

Procedia PDF Downloads 79
2091 Identification of How Pre-Service Physics Teachers Understand Image Formations through Virtual Objects in the Field of Geometric Optics and Development of a New Material to Exploit Virtual Objects

Authors: Ersin Bozkurt

Abstract:

The aim of the study is to develop materials for understanding image formations through virtual objects in geometric optics. The images in physics course books are formed by using real objects. This results in mistakes in the features of images because of generalizations which leads to conceptual misunderstandings in learning. In this study it was intended to identify pre-service physics teachers misunderstandings arising from false generalizations. Focused group interview was used as a qualitative method. The findings of the study show that students have several misconceptions such as "the image in a plain mirror is always virtual". However a real image can be formed in a plain mirror. To explain a virtual object's image formation in a more understandable way an overhead projector and episcope and their design was illustrated. The illustrations are original and several computer simulations will be suggested.

Keywords: computer simulations, geometric optics, physics education, students' misconceptions in physics

Procedia PDF Downloads 408
2090 A Syntactic Errors Analysis in the Malaysian ESL Learners' Written Composition

Authors: Annie Gedion, Johan Severinus Tati, Jacinta Caroline Peter

Abstract:

Syntax error analysis studies have a significant role in English language teaching especially in the second language. This study investigates the syntax errors in written composition by 50 multilingual ESL learners in Politeknik Kota Kinabalu Sabah, Malaysia. The subjects speak their own dialect, Malay as their second language and English as their third or foreign language. Data were collected from the written discourse in the form of descriptive essays. The subjects were asked to write in the classroom within 45 minutes. 15 categories of errors were classified into a set of syntactic categories and were analysed based on the five steps of the syntactic analysis procedure. The findings of the study showed that the mother tongue interference, as well as lack of vocabulary and grammar knowledge, were the major sources of syntax errors in the learners’ written composition. Learners should be exposed to the differentiation of Malay and English grammar to avoid interference and effective learning of second language writing.

Keywords: errors analysis, syntactic analysis, English as a second language, ESL writing

Procedia PDF Downloads 287
2089 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders

Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob

Abstract:

Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.

Keywords: ASD, social skills, cognitive training, mobile app

Procedia PDF Downloads 216
2088 The Comparative Effect of Practicing Self-Assessment and Critical Thinking Skills on EFL Learners’ Writing Ability

Authors: Behdokht Mall-Amiri, Sara Farzaminejad

Abstract:

The purpose of the present study was to discover which of the two writing activities, a self-assessment questioner or a critical thinking skills handout, is more effective on Iranian EFL learners’ writing ability. To fulfill the purpose of the study, a sample of 120 undergraduate students of English SAT for a standardized sample of PET. Eighty-two students whose scores fell one standard deviation above and below the sample mean were selected and randomly divided into two equal groups. One group practiced self-assessment and the other group practiced critical thinking skills while they were learning process writing. A writing posttest was finally administered to the students in both groups and the mean rank scores were compared by t-test. The result led to the rejection of the null hypothesis, indicating that practicing critical thinking skills had a significantly higher effect on the writing ability. The implications of the study for students and teachers as well as course book designers are discussed.

Keywords: writing ability, process writing, critical thinking skills, self-assessment

Procedia PDF Downloads 340
2087 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 148
2086 A Rural Journey of Integrating Interprofessional Education to Foster Trust

Authors: Julia Wimmers Klick

Abstract:

Interprofessional Education (IPE) is widely recognized as a valuable approach in healthcare education, despite the challenges it presents. This study explores IP surface anatomy lab sessions, with a focus on fostering trust and collaboration among healthcare students. The research is conducted within the context of rural healthcare settings in British Columbia (BC), where a medical school and a physical therapy (PT) program operate under the Faculty of Medicine at the University of British Columbia (UBC). While IPE sessions addressing soft skills have been implemented, the integration of hard skills, such as Anatomy, remains limited. To address this gap, a pilot feasibility study was conducted with a positive outcome, a follow-up study involved these IPE sessions aimed at exploring the influence of bonding and trust between medical and PT students. Data were collected through focus groups comprising participating students and faculty members, and a structured SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis was conducted. The IPE sessions, 3 in total, consisted of a 2.5-hour lab on surface anatomy, where PT students took on the teaching role, and medical students were newly exposed to surface anatomy. The focus of the study was on the relationship-building process and trust development between the two student groups, rather than assessing the acquisition of surface anatomy skills. Results indicated that the surface anatomy lab served as a suitable tool for the application and learning of soft skills. Faculty members observed positive outcomes, including productive interaction between students, reversed hierarchy with PT students teaching medical students, practicing active listening skills, and using a mutual language of anatomy. Notably, there was no grade assessment or external pressure to perform. The students also reported an overall positive experience; however, the specific impact on the development of soft skill competencies could not be definitively determined. Participants expressed a sense of feeling respected, welcomed, and included, all of which contributed to feeling safe. Within the small group environment, students experienced becoming a part of a community of healthcare providers that bonded over a shared interest in health professions education. They enjoyed sharing diverse experiences related to learning across their varied contexts, without fear of judgment and reprisal that were often intimidating in single professional contexts. During a joint Christmas party for both cohorts, faculty members observed students mingling, laughing, and forming bonds. This emphasized the importance of early bonding and trust development among healthcare colleagues, particularly in rural settings. In conclusion, the findings emphasize the potential of IPE sessions to enhance trust and collaboration among healthcare students, with implications for their future professional lives in rural settings. Early bonding and trust development are crucial in rural settings, where healthcare professionals often rely on each other. Future research should continue to explore the impact of content-concentrated IPE on the development of soft skill competencies.

Keywords: interprofessional education, rural healthcare settings, trust, surface anatomy

Procedia PDF Downloads 71
2085 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 233
2084 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 165
2083 Artificial Intelligence as a User of Copyrighted Work: Descriptive Study

Authors: Dominika Collett

Abstract:

AI applications, such as machine learning, require access to a vast amount of data in the training phase, which can often be the subject of copyright protection. During later usage, the various content with which the application works can be recorded or made available on the basis of which it produces the resulting output. The EU has recently adopted new legislation to secure machine access to protected works under the DSM Directive; but, the issue of machine use of copyright works is not clearly addressed. However, such clarity is needed regarding the increasing importance of AI and its development. Therefore, this paper provides a basic background of the technology used in the development of applications in the field of computer creativity. The second part of the paper then will focus on a legal analysis of machine use of the authors' works from the perspective of existing European and Czech legislation. The main results of the paper discuss the potential collision of existing legislation in regards to machine use of works with special focus on exceptions and limitations. The legal regulation of machine use of copyright work will impact the development of AI technology.

Keywords: copyright, artificial intelligence, legal use, infringement, Czech law, EU law, text and data mining

Procedia PDF Downloads 128
2082 Revising the Student Experiment Materials and Practices at the National University of Laos

Authors: Syhalath Xaphakdy, Toshio Nagata, Saykham Phommathat, Pavy Souwannavong, Vilayvanh Srithilat, Phoxay Sengdala, Bounaom Phetarnousone, Boualay Siharath, Xaya Chemcheng

Abstract:

The National University of Laos (NUOL) invited a group of volunteers from the Japan International Cooperation Agency (JICA) to revise the physics experiments to utilize the materials that were already available to students. The intension was to review and revise the materials regularly utilized in physics class. The project had access to limited materials and a small budget for the class in the unit; however, by developing experimental textbooks related to mechanics, electricity, and wave and vibration, the group found a way to apply them in the classroom and enhance the students teaching activities. The aim was to introduce a way to incorporate the materials and practices in the classroom to enhance the students learning and teaching skills, particularly when they graduate and begin working as high school teachers.

Keywords: NUOL, JICA, physics experiment materials, small budget, mechanics, electricity

Procedia PDF Downloads 240
2081 Going Viral: Constructively Aligning the Use of Digital Video to Effectively Support Faculty Development

Authors: Samuel Olugbenga King

Abstract:

This review article, which is a synthesis of the relevant research literature, focuses on the capabilities of digital video to support, facilitate and enhance faculty development. Based on the literature review, faculty development (i.e., academic or educational development) requires the continued adoption of cohesive, theoretical frameworks to guide research and practice; incorporation of relevant tools from analogous fields, such as teacher professional development; systematic program evaluations; and detailed descriptions of practice to further practice and creative development. A cohesive, five-heuristic framework is subsequently outlined to inform the design and evaluation of the use of digital video, so as to address the barriers to advancing faculty development, as identified through the literature review. Alternative impact evaluation approaches are also described, while the limitations of using digital video for faculty development are highlighted. This paper is therefore conceived as one way to meaningfully leverage the educational affordances of digital video to address some lingering gaps in faculty development.

Keywords: digital video, faculty/educational development, evaluation, scholarship of teaching and learning (SoTL)

Procedia PDF Downloads 353