Search results for: dynamic balance tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9271

Search results for: dynamic balance tests

4171 Study and Improvement of the Quality of a Production Line

Authors: S. Bouchami, M.N. Lakhoua

Abstract:

The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.

Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method

Procedia PDF Downloads 126
4170 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium

Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh

Abstract:

The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.

Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow

Procedia PDF Downloads 481
4169 Effects of External and Internal Focus of Attention in Motor Learning of Children with Cerebral Palsy

Authors: Morteza Pourazar, Fatemeh Mirakhori, Fazlolah Bagherzadeh, Rasool Hemayattalab

Abstract:

The purpose of study was to examine the effects of external and internal focus of attention in the motor learning of children with cerebral palsy. The study involved 30 boys (7 to 12 years old) with CP type 1 who practiced throwing beanbags. The participants were randomly assigned to the internal focus, external focus, and control groups, and performed six blocks of 10-trial with attentional focus reminders during a practice phase and no reminders during retention and transfer tests. Analysis of variance (ANOVA) with repeated measures on the last factor was used. The results show that significant main effects were found for time and group. However, the interaction of time and group was not significant. Retention scores were significantly higher for the external focus group. The external focus group performed better than other groups; however, the internal focus and control groups’ performance did not differ. The study concluded that motor skills in Spastic Hemiparetic Cerebral Palsy (SHCP) children could be enhanced by external attention.

Keywords: cerebral palsy, external attention, internal attention, throwing task

Procedia PDF Downloads 296
4168 Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea

Authors: Hamed A. El-Serehy, Khaled A. Al-Rasheid, Fahad A Al-Misned

Abstract:

The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem.

Keywords: bacteria, meiofauna, intertidal sediments, Red Sea

Procedia PDF Downloads 410
4167 A Nanosensor System Based on Disuccinimydyl – CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Authors: Rachel F. Ajayi, Unathi Sidwaba, Usisipho Feleni, Samantha F. Douman, Ezo Nxusani, Lindsay Wilson, Candice Rassie, Oluwakemi Tovide, Priscilla G.L. Baker, Sibulelo L. Vilakazi, Robert Tshikhudo, Emmanuel I. Iwuoha

Abstract:

Pyrazinamide (PZA) is among the first-line pro-drugs in the tuberculosis (TB) combination chemotherapy used to treat Mycobacterium tuberculosis. Numerous reports have suggested that hepatotoxicity due to pyrazinamide in patients is due to inappropriate dosing. It is therefore necessary to develop sensitive and reliable techniques for determining the PZA metabolic profile of diagnosed patients promptly and at point-of-care. This study reports the determination of PZA based on nanobiosensor systems developed from disuccinimidyl octanedioate modified Cytochrome P450-2E1 (CYP2E1) electrodeposited on gold substrates derivatised with (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs nanocomposites. The rapid and sensitive amperometric PZA detection gave a dynamic linear range of 2 µM to 16 µM revealing a limit of detection of 0.044 µM and a sensitivity of 1.38 µA/µM. The Michaelis-Menten parameters; KM, KMapp and IMAX were also calculated and found to be 6.0 µM, 1.41 µM and 1.51 µA respectively indicating a nanobiosensor suitable for use in serum.

Keywords: tuberculosis, cytochrome P450-2E1, disuccinimidyl octanedioate, pyrazinamide

Procedia PDF Downloads 397
4166 Contemporary Living Spaces – Exploring, Differentiating, and Defining the Terms and Requirements of “Micro” and “Small” Homes in Bulgaria

Authors: Evgenia Dimova-Aleksandrova, Elitsa Deianova

Abstract:

Dynamic changes in modern life and habitation due to demographic, urban, technology, and ecological factors affect the size of modern homes leading to a trend of decreasing their area. The current paper aims to investigate the differences between “micro” homes and “small” homes. In Bulgaria, these two types are not included in legal regulations, and therefore, a precise definition and special requirements are needed and sought in order to include their characteristic features in contemporary individual habitation. The purpose of the current study is to determine limits in built-up volume for the two types, to create a definition of the terms “micro” and “small” home, and to find methods to distinguish them. A comparative analysis will differentiate these types of habitation units, thus determining the boundaries for the built-up area for both concepts. The analysis is based on a case study from European practices and is focused on defining minimal requirements for “micro” and “small” home in the context of contemporary demands for high quality habitation in limited areas.

Keywords: Bulgaria, differentiation, micro home, requirements, small home

Procedia PDF Downloads 86
4165 Friction Calculation and Simulation of Column Electric Power Steering System

Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo

Abstract:

This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.

Keywords: friction, worm gear, column electric power steering system, simulink, bearing, EPS

Procedia PDF Downloads 339
4164 Explanation and Temporality in International Relations

Authors: Alasdair Stanton

Abstract:

What makes for a good explanation? Twenty years after Wendt’s important treatment of constitution and causation, non-causal explanations (sometimes referred to as ‘understanding’, or ‘descriptive inference’) have become, if not mainstream, at least accepted within International Relations. This article proceeds in two parts: firstly, it examines closely Wendt’s constitutional claims, and while it agrees there is a difference between causal and constitutional, rejects the view that constitutional explanations lack temporality. In fact, this author concludes that a constitutional argument is only possible if it relies upon a more foundational, causal argument. Secondly, through theoretical analysis of the constitutional argument, this research seeks to delineate temporal and non-temporal ways of explaining within International Relations. This article concludes that while the constitutional explanation, like other logical arguments, including comparative, and counter-factual, are not truly non-causal explanations, they are not bound as tightly to the ‘real world’ as temporal arguments such as cause-effect, process tracing, or even interpretivist accounts. However, like mathematical models, non-temporal arguments should aim for empirical testability as well as internal consistency. This work aims to give clear theoretical grounding to those authors using non-temporal arguments, but also to encourage them, and their positivist critics, to engage in thoroughgoing empirical tests.

Keywords: causal explanation, constitutional understanding, empirical, temporality

Procedia PDF Downloads 182
4163 Socio-Economic Impact of Covid-19 in Ethiopia

Authors: Kebron Abich Asnake

Abstract:

The outbreak of COVID-19 has had far-reaching socio-economic consequences globally, and Ethiopia is no exception. This abstract provides a summary of a research study on the socio-economic impact of COVID-19 in Ethiopia. The study analyzes the health impact, economic repercussions, social consequences, government response measures, and opportunities for post-crisis recovery. In terms of health impact, the research explores the spread and transmission of the virus, the capacity and response of the healthcare system, and the mortality rate, with a focus on vulnerable populations. The economic impact analysis entails investigating the contraction of the GDP, employment and income loss, disruption in key sectors such as agriculture, tourism, and manufacturing, and the specific implications for small and medium-sized enterprises (SMEs), foreign direct investment, and remittances. The social impact section looks at the disruptions in education and the digital divide, food security and nutrition challenges, increased poverty and inequality, gender-based violence, and mental health issues. The research also examines the measures taken by the Ethiopian government, including health and safety regulations, economic stimulus packages, social protection programs, and support for vulnerable populations. Furthermore, the study outlines long-term recovery prospects, social cohesion, and community resilience challenges. It highlights the need to strengthen the healthcare system and finds a balance between health and economic priorities. The research concludes by presenting recommendations for policy-makers and stakeholders, emphasizing opportunities for post-crisis recovery such as diversification of the economy, enhanced healthcare infrastructure, investment in digital infrastructure and technology, and support for domestic tourism and local industries. This research provides valuable insights into the socio-economic impact of COVID-19 in Ethiopia, offering a comprehensive analysis of the challenges faced and potential pathways towards recovery.

Keywords: impact, covid, ethiopia, health

Procedia PDF Downloads 63
4162 Ductility of Slab-Interior Column Connections Transferring Shear and Moment

Authors: Omar M. Ben-Sasi

Abstract:

Ductility of slab-column connections of flat slab structures is a desirable property that should be considered when designing such connections which are susceptible to punching failure around their columns. Tests to failure on six half-scale specimens were conducted for slab-interior column connections transferring shear force and unbalanced moment. The influences on connection ductility of four parameters; namely, the moment to shear force ratio, the ratio of column side length to slab effective depth, the aspect ratio of the column cross section, and the presence of four square openings located next to column corners were investigated. The study revealed marked effects of these parameters on connection ductility. Increasing the first and second parameters, were found to be in favor of increasing connection ductility, while the third and fourth parameters were found to have negative effects on the connection ductility. These findings should, hopefully, help in designing interior connections of flat slab structures.

Keywords: ductility, flat slab, failure, shear force, moment, unbalanced moment, punching failure, connection, interior-column connection

Procedia PDF Downloads 383
4161 ARIMA-GARCH, A Statistical Modeling for Epileptic Seizure Prediction

Authors: Salman Mohamadi, Seyed Mohammad Ali Tayaranian Hosseini, Hamidreza Amindavar

Abstract:

In this paper, we provide a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autore- gressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction, but the ARCH or GARCH model acting on the residuals of ARIMA attains a con- siderable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are surveyed to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes.

Keywords: epileptic seizure prediction , ARIMA, ARCH and GARCH modeling, heteroskedasticity, EEG

Procedia PDF Downloads 394
4160 Impact of Dietary Rumen Protected Choline on Transition Dairy Cows’ Productive Performance

Authors: Mohamed Ahmed Tony, Fayez Abaza

Abstract:

The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition and some blood metabolites were evaluated in transition dairy cows. Forty multiparous cows were blocked into 20 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 2 weeks before and until 8 weeks after calving. Both groups received the same basal diet as total mixed ration. Additionally, 50 g of a rumen-protected choline supplement (25% rumen protected choline chloride) was added individually in the feed. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at week 2 before calving, d 1, d 4, d 7, d 10, week 2, week 3, and week 8 after calving. Glucose, triglycerids, nonesterified fatty acids, and β-hydroxybutyric acid in blood were analysed. The results revealed that choline supplementation increased DM intake from 16.5 to 18.0 kg/d and, hence, net energy intake from 99.2 to 120.5 MJ/d at the intercept of the lactation curve at 1 day in milk. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.11 to 1.22 kg/d at the intercept of the lactation curve. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 day in milking, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation decreased the concentration of blood triglycerids during the first 4 wk after parturition. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight and body condition score. Results from this study suggest that fat metabolism in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow.

Keywords: choline, dairy cattle, transition cow, triglycerids

Procedia PDF Downloads 496
4159 Transformation Strategies of the Nigerian Textile and Clothing Industries: The Integration of China Clothing Sector Model

Authors: Adetoun Adedotun Amubode

Abstract:

Nigeria's Textile Industry was the second largest in Africa after Egypt, with above 250 vibrant factories and over 50 percent capacity utilization contributing to foreign exchange earnings and employment generation. Currently, multifaceted challenges such as epileptic power supply, inconsistent government policies, growing digitalization, smuggling of foreign textiles, insecurity and the inability of the local industries to compete with foreign products, especially Chinese textile, has created a hostile environment for the sector. This led to the closure of most of the textile industries. China's textile industry has experienced institutional change and industrial restructuring, having 30% of the world's market share. This paper examined the strategies adopted by China in transforming her textile and clothing industries and designed a model for the integration of these strategies to improve the competitive strength and growth of the Nigerian textile and clothing industries in a dynamic and changing market. The paper concludes that institutional support, regional production, export-oriented policy, value-added and branding cultivation, technological upgrading and enterprise resource planning be integrated into the Nigerian clothing and textile industries.

Keywords: clothing, industry, integration, Nigerian, textile, transformation.

Procedia PDF Downloads 136
4158 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys

Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho

Abstract:

Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.

Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery

Procedia PDF Downloads 517
4157 Analytical Design of Fractional-Order PI Controller for Decoupling Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system

Procedia PDF Downloads 313
4156 Study of Toxic Effect and Anti-Oxidative Activity of a β- Amidophosphonates

Authors: Houria Djebar, Amina Saib, Malika Berredjem, Khaoula Bechlem, Mohammed-Reda Djebar

Abstract:

Reactive oxygen species (ROS) have a high potential to damage almost all types of cellular components of the body, which explains their involvement in the induction and/or amplification of several pathologies. Supplementation of the body by exogenous antioxidants is very useful against these harmful species. In this context, we attempted to evaluate the in vitro and in vivo antioxidant activities of three newly synthesized amidophosphonates (AP1, AP2, and AP3). The results relating to the in vitro tests for DPPH radical scavenging activity shows that these amidophosphonates have a modest antiradical power (ARP) less effectively pronounced compared with an analogue marketed in Algeria: (Dursban) Clorpiryphos ethyl. However, in vivo effects were evaluated on some antioxidant systems (LP intensity, CAT activity and GSH content), or in combination with 2, 2-diphenyl-picrylhydrazyle (DPPH) radical in paramecium tetraurelia used as a complementary system to rapidly elucidate the cytotoxicity. On the basis of the results obtained it can be concluded that amidophosphonates studied exhibited a mild protective effect. The mechanism for how they influenced the antioxidant activities was discussed.

Keywords: Paramecium tetraurelia, amidophosphonates, antioxidant activity, DPPH free radical, in vitro experiments, biochemical parameters

Procedia PDF Downloads 147
4155 Repeatable Scalable Business Models: Can Innovation Drive an Entrepreneurs Un-Validated Business Model?

Authors: Paul Ojeaga

Abstract:

Can the level of innovation use drive un-validated business models across regions? To what extent does industrial sector attractiveness drive firm’s success across regions at the time of start-up? This study examines the role of innovation on start-up success in six regions of the world (namely Sub Saharan Africa, the Middle East and North Africa, Latin America, South East Asia Pacific, the European Union and the United States representing North America) using macroeconomic variables. While there have been studies using firm level data, results from such studies are not suitable for national policy decisions. The need to drive a regional innovation policy also begs for an answer, therefore providing room for this study. Results using dynamic panel estimation show that innovation counts in the early infancy stage of new business life cycle. The results are robust even after controlling for time fixed effects and the study present variance-covariance estimation robust standard errors.

Keywords: industrial economics, un-validated business models, scalable models, entrepreneurship

Procedia PDF Downloads 270
4154 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 229
4153 The in vitro Effects of Various Immunomodulatory Nutritional Compounds on Antigen-Stimulated Whole-Blood Culture Cytokine Production

Authors: Ayu S. Muhamad, Michael Gleeson

Abstract:

Immunomodulators are substances that alter immune system via dynamic regulation of messenger molecules. It can be divided into immunostimulant and immunosuppressant. It can help to increase immunity of people with a low immune system, and also can help to normalize an overactive immune system. Aim of this study is to investigate the effects of in vitro exposure to low and high doses of several immunomodulators which include caffeine, kaloba and quercetin on antigen-stimulated whole blood culture cytokine production. Whole blood samples were taken from 5 healthy males (age: 32 ± 12 years; weight: 75.7 ± 6.1 kg; BMI: 24.3 ± 1.5 kg/m2) following an overnight fast with no vigorous activity during the preceding 24 h. The whole blood was then stimulated with 50 µl of 100 x diluted Pediacel vaccine and low or high dose of immunomodulators in the culture plate. After 20 h incubation (5% CO2, 37°C), it was analysed using the Evidence Investigator to determine the production of cytokines including IL-2, IL-4, IL-10, IFN-γ, and IL-1α. Caffeine and quercetin showed a tendency towards decrease cytokine production as the doses were increased. On the other hand, an upward trend was evident with kaloba, where a high dose of kaloba seemed to increase the cytokine production. In conclusion, we found that caffeine and quercetin have potential as immunosuppressant and kaloba as immunostimulant.

Keywords: caffeine, cytokine, immunomodulators, kaloba, quercetin

Procedia PDF Downloads 452
4152 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions

Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori

Abstract:

Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.

Keywords: Glycine max (L.), cluster analysis, PCA, vigor

Procedia PDF Downloads 238
4151 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 261
4150 Helical Motions Dynamics and Hydraulics of River Channel Confluences

Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe

Abstract:

River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.

Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer

Procedia PDF Downloads 129
4149 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 294
4148 Simulation and Experimentation of Solar Thermal Collector for Air Heating System Using Dynamic Ribs

Authors: Nishitha Chowdary, Prabhav Dwivedi

Abstract:

Solar radiation (or insolation) is responsible for 174 petawatts (PW) of energy reaching the Earth's atmosphere. About one-third of this is reflected in space. Solar energy is by far the most abundant source of energy on Earth. In this study to use solar energy to the fullest in a solar air heater, An analysis of a solar air heater duct roughened with fixed cylindrical ribs in 3-D has been done using CFD. These fixed cylindrical ribs have a uniform circular cross-section and are placed in transverse in-line and staggered arrangements. The orientation of ribs has been fixed and is perpendicular to the in-flow direction. Cylindrical ribs are arranged periodically with fixed pitch; therefore, one pitch length is only considered in the present study. Validation has been done with smooth as well as with roughened duct and is matched perfectly with the developed correlations. Geometric parameters, namely rib height (e), ranges from 1 to 2 mm and pitch ranges from 10 to 40 mm are used in the present investigation. Thermo-hydraulic performance parameters in terms of average Nusselt number and friction factor have been extracted for Reynolds number ranging 5000—18000 to optimize the performance of roughened duct.

Keywords: cylindrical ribs, solar air heater, thermo-hydraulic performance factor, roughened duct

Procedia PDF Downloads 141
4147 Life Cycle Cost Evaluation of Structures Retrofitted with Damped Cable System

Authors: Asad Naeem, Mohamed Nour Eldin, Jinkoo Kim

Abstract:

In this study, the seismic performance and life cycle cost (LCC) are evaluated of the structure retrofitted with the damped cable system (DCS). The DCS is a seismic retrofit system composed of a high-strength steel cable and pressurized viscous dampers. The analysis model of the system is first derived using various link elements in SAP2000, and fragility curves of the structure retrofitted with the DCS and viscous dampers are obtained using incremental dynamic analyses. The analysis results show that the residual displacements of the structure equipped with the DCS are smaller than those of the structure with retrofitted with only conventional viscous dampers, due to the enhanced stiffness/strength and self-centering capability of the damped cable system. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with viscous damper. It is also observed that the initial cost of the DCS method required for the seismic retrofit is smaller than that of the structure with viscous dampers and that the LCC of the structure equipped with the DCS is smaller than that of the structure with viscous dampers.

Keywords: damped cable system, fragility curve, life cycle cost, seismic retrofit, self-centering

Procedia PDF Downloads 537
4146 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 269
4145 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: Ahmed Amrani, Oussama Allali, Amira Ben Hamida, Felix Defrance, Stephanie Morland, Eva Pineau, Thomas Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city

Procedia PDF Downloads 157
4144 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.

Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic

Procedia PDF Downloads 689
4143 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 112
4142 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica

Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat

Abstract:

Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.

Keywords: carmustine, silica, controlled, release

Procedia PDF Downloads 245