Search results for: universal testing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6304

Search results for: universal testing machine

1234 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 90
1233 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study

Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock

Abstract:

Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.

Keywords: mental health, schools, young people, whole-school culture

Procedia PDF Downloads 64
1232 Bridging the Gap Between Student Needs and Labor Market Requirements in the Translation Industry in Saudi Arabia

Authors: Sultan Samah A Almjlad

Abstract:

The translation industry in Saudi Arabia is experiencing significant shifts driven by Vision 2030, which aims to diversify the economy and enhance international engagement. This change highlights the need for translators who are skilled in various languages and cultures, playing a crucial role in the nation's global integration efforts. However, there's a notable gap between the skills taught in academic institutions and what the job market demands. Many translation programs in Saudi universities don't align well with industry needs, resulting in graduates who may not meet employer expectations. To tackle this challenge, it's essential to thoroughly analyze the market to identify the key skills required, especially in sectors like legal, medical, technical, and audiovisual translation. At the same time, existing translation programs need to be evaluated to see if they cover necessary topics and provide practical training. Involving stakeholders such as translation agencies, professionals, and students is crucial to gather diverse perspectives. Identifying discrepancies between academic offerings and market demands will guide the development of targeted strategies. These strategies may include enriching curricula with industry-specific content, integrating emerging technologies like machine translation and CAT tools, and establishing partnerships with industry players to offer practical training opportunities and internships. Industry-led workshops and seminars can provide students with valuable insights, and certification programs can validate their skills. By aligning academic programs with industry needs, Saudi Arabia can build a skilled workforce of translators, supporting its economic diversification goals under Vision 2030. This alignment benefits both students and the industry, contributing to the growth of the translation sector and the overall development of the country.

Keywords: translation industry, briging gap, labor market, requirements

Procedia PDF Downloads 42
1231 Extending Theory of Planned Behavior to Modelling Chronic Patients’ Acceptance of Health Information: An Information Overload Perspective

Authors: Shu-Lien Chou, Chung-Feng Liu

Abstract:

Self-health management of chronic illnesses plays an important part in chronic illness treatments. However, various kinds of health information (health education materials) which government or healthcare institutions provide for patients may not achieve the expected outcome. One of the critical reasons affecting patients’ use intention could be patients’ perceived Information overload regarding the health information. This study proposed an extended model of Theory of Planned Behavior, which integrating perceived information overload as another construct to explore patients’ use intention of the health information for self-health management. The independent variables are attitude, subject norm, perceived behavior control and perceived information overload while the dependent variable is behavior intention to use the health information. The cross-sectional study used a structured questionnaire for data collection, focusing on the chronic patients with coronary artery disease (CAD), who are the potential users of the health information, in a medical center in Taiwan. Data were analyzed using descriptive statistics of the basic information distribution of the questionnaire respondents, and the Partial Least Squares (PLS) structural equation model to study the reliability and construct validity for testing our hypotheses. A total of 110 patients were enrolled in this study and 106 valid questionnaires were collected. The PLS analysis result indicates that the patients’ perceived information overload of health information contributes the most critical factor influencing the behavioral intention. Subjective norm and perceived behavioral control of TPB constructs had significant effects on patients’ intentions to use health information also, whereas the attitude construct did not. This study demonstrated a comprehensive framework, which extending perceived information overload into TPB model to predict patients’ behavioral intention of using heath information. We expect that the results of this study will provide useful insights for studying health information from the perspectives of academia, governments, and healthcare providers.

Keywords: chronic patients, health information, information overload, theory of planned behavior

Procedia PDF Downloads 439
1230 Methodologies for Stability Assessment of Existing and Newly Designed Reinforced Concrete Bridges

Authors: Marija Vitanovа, Igor Gjorgjiev, Viktor Hristovski, Vlado Micov

Abstract:

Evaluation of stability is very important in the process of definition of optimal structural measures for maintenance of bridge structures and their strengthening. To define optimal measures for their repair and strengthening, it is necessary to evaluate their static and seismic stability. Presented in this paper are methodologies for evaluation of the seismic stability of existing reinforced concrete bridges designed without consideration of seismic effects and checking of structural justification of newly designed bridge structures. All bridges are located in the territory of the Republic of North Macedonia. A total of 26 existing bridges of different structural systems have been analyzed. Visual inspection has been carried out for all bridges, along with the definition of three main damage categories according to which structures have been categorized in respect to the need for their repair and strengthening. Investigations involving testing the quality of the built-in materials have been carried out, and dynamic tests pointing to the dynamic characteristics of the structures have been conducted by use of non-destructive methods of ambient vibration measurements. The conclusions drawn from the performed measurements and tests have been used for the development of accurate mathematical models that have been analyzed for static and dynamic loads. Based on the geometrical characteristics of the cross-sections and the physical characteristics of the built-in materials, interaction diagrams have been constructed. These diagrams along with the obtained section quantities under seismic effects, have been used to obtain the bearing capacity of the cross-sections. The results obtained from the conducted analyses point to the need for the repair of certain structural parts of the bridge structures. They indicate that the stability of the superstructure elements is not critical during a seismic effect, unlike the elements of the sub-structure, whose strengthening is necessary.

Keywords: existing bridges, newly designed bridges, reinforced concrete bridges, stability assessment

Procedia PDF Downloads 102
1229 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 91
1228 The Effect of Satisfaction with the Internet on Online Shopping Attitude With TAM Approach Controlled By Gender

Authors: Velly Anatasia

Abstract:

In the last few decades extensive research has been conducted into information technology (IT) adoption, testing a series of factors considered to be essential for improved diffusion. Some studies analyze IT characteristics such as usefulness, ease of use and/or security, others focus on the emotions and experiences of users and a third group attempts to determine the importance of socioeconomic user characteristics such as gender, educational level and income. The situation is similar regarding e-commerce, where the majority of studies have taken for granted the importance of including these variables when studying e-commerce adoption, as these were believed to explain or forecast who buys or who will buy on the internet. Nowadays, the internet has become a marketplace suitable for all ages and incomes and both genders and thus the prejudices linked to the advisability of selling certain products should be revised. The objective of this study is to test whether the socioeconomic characteristics of experienced e-shoppers such as gender rally moderate the effect of their perceptions of online shopping behavior. Current development of the online environment and the experience acquired by individuals from previous e-purchases can attenuate or even nullify the effect of these characteristics. The individuals analyzed are experienced e-shoppers i.e. individuals who often make purchases on the internet. The Technology Acceptance Model (TAM) was broadened to include previous use of the internet and perceived self-efficacy. The perceptions and behavior of e-shoppers are based on their own experiences. The information obtained will be tested using questionnaires which were distributed and self-administered to respondent accustomed using internet. The causal model is estimated using structural equation modeling techniques (SEM), followed by tests of the moderating effect of socioeconomic variables on perceptions and online shopping behavior. The expected findings of this study indicated that gender moderate neither the influence of previous use of the internet nor the perceptions of e-commerce. In short, they do not condition the behavior of the experienced e-shopper.

Keywords: Internet shopping, age groups, gender, income, electronic commerce

Procedia PDF Downloads 340
1227 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 369
1226 Squaring the Triangle: A Stumpian Solution to the Major Frictions that Exist between Pragmatism, Religion, and Moral Progress; Richard Bernstein, Cornel West, and Hans-Georg Gadamer Re-Examined

Authors: Martin Bloomfield

Abstract:

This paper examines frictions that lie at the heart of any pragmatist conception of religion and moral progress. I take moral progress to require the ability to correctly analyse social problems, provide workable solutions to these problems, and then rationally justify the analyses and solutions used. I take religion here to involve, as a minimal requirement, belief in the existence of God, a god, or gods, such that they are recognisable to most informed observers within the Western tradition. I take pragmatism to belong to, and borrow from, the philosophical traditions of non-absolutism, anti-realism, historicism, and voluntarism. For clarity, the relevant brands of each of these traditions will be examined during the paper. The friction identified in the title may be summed up as follows: those who, like Cornel West (and, when he was alive, Hilary Putnam), are theistic pragmatists with an interest in realising moral progress, have all been aware of a problem inherent in their positions. Assuming it can be argued that religion and moral progress are compatible, a non-absolutist, anti-realist, historicist position nevertheless raises problems that, as Leon Wieseltier pointed out, the pragmatist still believes in a God who isn’t real, and that the truth of any religious statement (including “God exists”) is relative not to any objective reality but to communities of engaged interlocutors; and that, where there are no absolute standards of right and wrong, any analysis of (and solution to) social problems can only be rationally justified relative to one or another community or moral and epistemic framework. Attempts made to universalise these frameworks, notably by Dewey, Gadamer, and Bernstein, through democracy and hermeneutics, fall into either a vicious and infinite regress, or (taking inspiration from Habermas) the problem of moral truths being decided through structures of power. The paper removes this friction by highlighting the work of Christian pragmatist Cornel West through the lens of the philosopher of religion Eleanore Stump. While West recognises that for the pragmatist, the correctness of any propositions about God or moral progress is impossible to rationally justify to any outside the religious, moral or epistemic framework of the speakers themselves without, as he calls it, a ‘locus of truth’ (which is itself free from the difficulties Dewey, Gadamer and Bernstein fall victim to), Stump identifies routes to knowledge which provide such a locus while avoiding the problems of relativism, power dynamics, and regress. She describes “Dominican” and “Franciscan” knowledge (roughly characterised as “propositional” and “non-propositional”), and uses this distinction to identify something Bernstein saw as missing from Gadamer: culture-independent norms, upon which universal agreement can be built. The “Franciscan knowledge” Stump identifies as key is second-personal knowledge of Christ. For West, this allows the knower to access vital culture-independent norms. If correct, instead of the classical view (religion is incompatible with pragmatism), Christianity becomes key to pragmatist knowledge and moral-knowledge claims. Rather than being undermined by pragmatism, Christianity enables pragmatists to make moral and epistemic claims, free from troubling power dynamics and cultural relativism.

Keywords: Cornel West, Cultural Relativism, Gadamer, Philosophy of Religion, Pragmatism

Procedia PDF Downloads 199
1225 A Digital Environment for Developing Mathematical Abilities in Children with Autism Spectrum Disorder

Authors: M. Isabel Santos, Ana Breda, Ana Margarida Almeida

Abstract:

Research on academic abilities of individuals with autism spectrum disorder (ASD) underlines the importance of mathematics interventions. Yet the proposal of digital applications for children and youth with ASD continues to attract little attention, namely, regarding the development of mathematical reasoning, being the use of the digital technologies an area of great interest for individuals with this disorder and its use is certainly a facilitative strategy in the development of their mathematical abilities. The use of digital technologies can be an effective way to create innovative learning opportunities to these students and to develop creative, personalized and constructive environments, where they can develop differentiated abilities. The children with ASD often respond well to learning activities involving information presented visually. In this context, we present the digital Learning Environment on Mathematics for Autistic children (LEMA) that was a research project conducive to a PhD in Multimedia in Education and was developed by the Thematic Line Geometrix, located in the Department of Mathematics, in a collaboration effort with DigiMedia Research Center, of the Department of Communication and Art (University of Aveiro, Portugal). LEMA is a digital mathematical learning environment which activities are dynamically adapted to the user’s profile, towards the development of mathematical abilities of children aged 6–12 years diagnosed with ASD. LEMA has already been evaluated with end-users (both students and teacher’s experts) and based on the analysis of the collected data readjustments were made, enabling the continuous improvement of the prototype, namely considering the integration of universal design for learning (UDL) approaches, which are of most importance in ASD, due to its heterogeneity. The learning strategies incorporated in LEMA are: (i) provide options to custom choice of math activities, according to user’s profile; (ii) integrates simple interfaces with few elements, presenting only the features and content needed for the ongoing task; (iii) uses a simple visual and textual language; (iv) uses of different types of feedbacks (auditory, visual, positive/negative reinforcement, hints with helpful instructions including math concept definitions, solved math activities using split and easier tasks and, finally, the use of videos/animations that show a solution to the proposed activity); (v) provides information in multiple representation, such as text, video, audio and image for better content and vocabulary understanding in order to stimulate, motivate and engage users to mathematical learning, also helping users to focus on content; (vi) avoids using elements that distract or interfere with focus and attention; (vii) provides clear instructions and orientation about tasks to ease the user understanding of the content and the content language, in order to stimulate, motivate and engage the user; and (viii) uses buttons, familiarly icons and contrast between font and background. Since these children may experience little sensory tolerance and may have an impaired motor skill, besides the user to have the possibility to interact with LEMA through the mouse (point and click with a single button), the user has the possibility to interact with LEMA through Kinect device (using simple gesture moves).

Keywords: autism spectrum disorder, digital technologies, inclusion, mathematical abilities, mathematical learning activities

Procedia PDF Downloads 117
1224 Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it.

Keywords: condition monitoring, gearbox defects, predictive maintenance, vibration analysis

Procedia PDF Downloads 467
1223 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 109
1222 Female Sex Workers and Their Association with Self-Help Groups in Thane, Maharashtra, India: A Comparative Analysis in the Context of HIV Program Outcome

Authors: Awdhesh Yadav, P. S. Saravanamurthy, Shaikh Tayyaba, Uma Shah, Ashok Agarwal

Abstract:

Objectives: HIV interventions in India has leveraged Self-Help Group (SHG) as one of the key strategies under structural intervention to empower female sex workers (FSW) to reduce their risk exposure and vulnerability to STI/HIV. Understanding the role of SHGs in light of the evolving dynamics of sex work needs to be delved into to strategize HIV interventions among FSWs in India. This paper aims to study the HIV program outcome among the FSWs associated with SHGs and FSWs not associated with SHGs in Thane, Maharashtra. Study Design: This cross-sectional study, was undertaken from the Behavioral Tracking Survey (BTS) conducted among 503 FSWs in Thane in 2015. Two-stage probability based conventional sampling was done for selection of brothel and bar based FSWs, while Time Location Cluster (TLC) sampling was done for home, lodge and street-based sex workers. Methods: Bivariate and multivariate logistic regression were performed to compare and contrast between FSWs associated with SHG and those not associated with SHG with respect to the utilization of HIV related services by them. ‘Condom use’, ‘consistent condom use’, ‘contact with peer-educators’, ‘counseling sessions’ and ‘HIV testing’ were chosen as indicators on HIV service utilization. Results: 8% (38) of FSWs are registered with SHG; 92% aged ≥ 25 years, 47% illiterate, and 71% are currently married. The likelihood of utilizing HIV services including, knowledge on HIV/AIDS and its mode of transmission (OR:5.54; CI: 1.87-16.60; p < 0.05),accessed drop-in Centre (OR: 6.53; CI: 2.15-19.88; p < 0.10), heard about joint health camps (OR: 4.71; CI:2.12-10.46); p < 0.05), negotiated or stood up against police/broker/local goonda/clients (OR: 2.26; CI: 1.08-4.73; p < 0.05), turned away clients when they refused to use condom during sex (OR: 3.76; CI: 1.27-11.15; p < 0.05) and heard of ART (OR; 4.55; CI: 2.18-9.48; p < 0.01) were higher among FSWs associated with SHG in comparison to FSWs not associated with SHG. Conclusions: Considering the improved HIV program outcomes among FSWs associated with SHG; HIV interventions among FSWs could consider facilitating the formation of SHGs with FSWs as one of the key strategies to empower the community for ensuring better program outcomes.

Keywords: empowerment, female sex workers, HIV, Thane, self-help group

Procedia PDF Downloads 239
1221 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 158
1220 Taxonomic Study and Environmental Ecology of Parrot (Rose Ringed) in City Mirpurkhas, Sindh, Pakistan

Authors: Aisha Liaquat Ali, Ghulam Sarwar Gachal, Muhammad Yusuf Sheikh

Abstract:

The Parrot rose ringed (Psittaculla krameri) commonly known as Tota, belongs to the order ‘Psittaciformes’ and family ‘Psittacidea’. Its sub-species inhabiting Pakistan are Psittaculla borealis. The parrot rose-ringed has been categorized the least concern species, the core aim of the present study is to investigate the ecology and taxonomy of parrot (rose-ringed). Sampling was obtained for the taxonomic identification from various adjoining areas in City Mirpurkhas by non-random method, which was conducted from Feb to June 2017. The different parameters measured with the help of a vernier caliper, foot scale, digital weighing machine. Body parameters were measured via; length of body, length of the wings, length of tail, mass in grams. During present study, a total number of 36 specimens were collected from different localities of City Mirpurkhas (38.2%) were male and (62.7%) were female. Maximum population density of Psittaculla Krameri borealis (52.9%) was collected from Sindh Horticulture Research Station (fruit farm) Mirpurkhas. Minimum no: of Psittaculla krameri borealis (5.5%) collected in urban parks. It was observed that Psittaculla krameri borealis were in dense population during the months of ‘May’ and ‘June’ when the temperature ranged between 20°C and 45°C. A Psittaculla krameri borealis female was found the heaviest in body weight. The species of parrot (rose ringed) captured during study having green plumage, coverts were gray, upper beak, red and lower beak black, shorter tail in female long tail in the male which was similar to the Psittaculla krameri borealis.

Keywords: Mirpurkhas Sindh Pakistan, environmental ecology, parrot, rose-ringed, taxonomy

Procedia PDF Downloads 175
1219 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling

Authors: Fahad Y. Al-dawish

Abstract:

The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.

Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing

Procedia PDF Downloads 423
1218 The Effectiveness of Copegus (Ribavirin) Placed in a Field of Unexplored Properties of Low-Level Laser Radiation in the Treatment of Long-Covid Syndrome

Authors: Naylya Djumaeva

Abstract:

Since the end of 2019, the world has been shaken by an infection that has claimed the lives of more than six and a half million patients. Currently, SARS-CoV-2 not only causes acute damage but has long-term consequences affecting every organ and has brought a wave of a new chronic disabling condition called Long-Covid..This preliminary study describes an application of un-explored properties of low-level laser radiation with laser- light emitter in the field of which is placed Copegus (Ribavirin) with the aim of treatment of patients with Long-Covid syndrome. The difference from the traditional use of the drug is that Copegus was not prescribed to the patient by the traditional method - orally or intravenously, and the medicinal properties of the drug were introduced into the patient’s body using the un-explored properties of low-power laser radiation. Ninety eight patients with Long- Covid syndrome were observed. The obtained findings suggest that under the influence of the field formed into the laser- light emitter with a Copegus placed inside the field, the remote transfer of pharmacological properties of Сopegus occurs. Conclusions about the produced effect of exposure were made based on improvement in the condition of patients, the disappearance of complaints, and positive changes in various diagnostic tests performed by the patients. Biography: Djumaeva N completed her PhD from the Institute of Epidemiology, Microbiology and Infectious Diseases in 2000. In her dissertation work devoted to the treatment of patients with chronic hepatitis B virus infection, she presented data on the possible influence of Complex Homeopathic Preparations on the organization of bound intracellular water in the cells of the body. She is the Consultant (Neurologist) at the Scientific-Research Institute for Virology, Uzbekistan, and an expert in “medicament testing” method (30 years). She has published 43 papers, including 2 patents.

Keywords: long covid, low level laser, copegus, laser- light emmiter

Procedia PDF Downloads 96
1217 Sustainable Milling Process for Tensile Specimens

Authors: Shilpa Kumari, Ramakumar Jayachandran

Abstract:

Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.

Keywords: dry milling, tensile testing, wet milling, 6xxx alloy

Procedia PDF Downloads 201
1216 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi

Abstract:

The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.

Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point

Procedia PDF Downloads 109
1215 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model

Procedia PDF Downloads 468
1214 Basic Education Curriculum in South- South Nigeria: Challenges and Opportunities of Quality Contents in the Second Language Learning

Authors: Catherine Alex Agbor

Abstract:

The modern Nigerian society is dynamic, divided in zones based on economic, political and educational resources often shared across the zones. The Six Geopolitical Zones in Nigeria is a major division in modern Nigeria, created during the regime of president Ibrahim Badamasi Babangida. They are North Central, North East, North West, South East, South South and South West. However, the zone used in this study is known as former South-Eastern State of Akwa-Ibom State and Cross-River State; former Rivers State of Bayelsa State and Rivers State; and former Mid-Western Region, Nigeria of Delta State and Edo State. Many reforms have taken place overtime, particularly in the education sector. Education is constantly presenting new ideas and innovative approaches which act to facilitate the rapid exchange of knowledge and provide quality basic education for learners. The Federal Government of Nigeria in accordance with its National Council on Education directed the Nigerian Educational Research and Development Council to restructure its basic education curriculum with the hope to enable the nation meet national and global developmental goals. One of the goals of the 9-year Basic Education Programme is developing in the entire citizenry a strong consciousness for education and a strong commitment to its vigorous promotion. Another is ensuring the acquisition of appropriate levels of literacy, numeracy, manipulative, communicative and life-skills as well as the ethical, moral and civic values for laying a solid foundation for lifelong learning. Therefore, this article at the introductory stage is aimed to describe some key issues in Nigeria’s experience in the basic education curriculum. In this study, particular attention is paid to this very recent educational policy of the Nigerian government known as Universal Basic Education, its challenges and what can be done to make the policy achieve its desired objectives. It progresses to analyze modern requirements for second language teaching; and presents the challenges of second language teaching in Nigeria. Finally, it reports a study which investigated special efforts for appropriate achievement of quality education in language classroom in the south-south zone of Nigeria. One fundamental research question was posed on what educational practices can contribute to current understanding of the structure of language curriculum. More explicitly, the study was designed to analyze the extent to which quality content contributes to current understanding of the structure of school curriculum in the zone. Otherwise stated, it investigated how student-centred educational practices impact on their learning of French language. One hundred and eighty (180) participants (teachers) were purposefully sampled for the study. Qualitative technique was used to elicit information from participants. The qualitative method used was Focus Group Discussion (FGD). Participants were divided into six groups comprising of 30 teachers from each zone. Group discussions were based mainly on curriculum contents and practices. Information from participants revealed that the curriculum content, among others is inadequate and should be re-examined. Recommendations were proffered as a panacea to concrete implementation of the basic education in Nigeria.

Keywords: basic education, quality contents, second language, south-south states

Procedia PDF Downloads 244
1213 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 147
1212 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 318
1211 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 100
1210 Cationic Copolymer-Functionalized Nanodiamonds Stabilizes Silver Nanoparticles with Dual Antibacterial Activity and Lower Cytotoxicity

Authors: Weiwei Cao, Xiaodong Xing

Abstract:

In order to effectively resolve the microbial pollution and contamination, synthetic nano-antibacterial materials are widely used in daily life. Among them, nanodiamonds (NDs) have recently been demonstrated to hold promise as useful materials in biomedical applications due to their high specific surface area and biocompatibility. In this work, the copolymer, poly(4-vinylpyridine-co-2-hydroxyethyl methacrylate) was applied for the surface functionalization of NDs to produce the quaternized poly(4-vinylpyridine-co-2-hydroxyethyl methacrylate)-functionalized NDs (QNDs). Then, QNDs were used as a substrate for silver nanoparticles (AgNPs) to produce a QND@Ag hybrid. The composition and morphology of the resultant nanostructures were confirmed by Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The mass fraction of AgNPs in the nanocomposites was about 35.7%. The antibacterial performances of the prepared nanocomposites were evaluated with Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus by minimum inhibitory concentration (MIC), inhibition zone testing and time-kill study. As a result, due to the synergistic antibacterial activity of QND and AgNPs, this hybrid showed substantially higher antibacterial activity than QND and polyvinyl pyrrolidone (PVP)-stabilized AgNPs, and the AgNPs on QND@Ag were more stable than the Ag NPs on PVP, resulting in long-term antibacterial effects. More importantly, this hybrid showed excellent water solubility and low cytotoxicity, suggesting the great potential application in biomedical applications. The present work provided a simple strategy that successfully turned NDs into nanosized antibiotics with simultaneous superior stability and biocompatibility, which would broaden the applications of NDs and advance the development of novel antibacterial agents.

Keywords: cationic copolymer, nanodiamonds, silver nanoparticles, dual antibacterial activity, lower cytotoxicity

Procedia PDF Downloads 132
1209 Opposed Piston Engine Crankshaft Strength Calculation Using Finite Element Method

Authors: Konrad Pietrykowski, Michał Gęca, Michał Bialy

Abstract:

The paper presents the results of the crankshaft strength simulation. The crankshaft was taken from the opposed piston engine. Calculations were made using finite element method (FEM) in Abaqus software. This program allows to perform strength tests of individual machine parts as well as their assemblies. The crankshaft that was used in the calculations will be used in the two-stroke aviation research aircraft engine. The assumptions for the calculations were obtained from the AVL Boost software, from one-dimensional engine cycle model and from the multibody model using the method developed in the MSC Adams software. The research engine will be equipped with 3 combustion chambers and two crankshafts. In order to shorten the calculation time, only one crankcase analysis was performed. The cut of the shaft has been selected with the greatest forces resulting from the engine operation. Calculations were made for two cases. For maximum piston force when maximum bending load occurs and for the maximum torque. Cast iron material was adopted. For this material, Poisson's number, density, and Young's modulus were determined. The computational grid contained of 1,977,473 Tet elements. This type of elements was chosen because of the complex design of the crankshaft. Results are presented in the form of stress distributions maps and displacements on the surface and inside the geometry of the shaft. The results show the places of tension stresses, however, no stresses are exceeded at any place. The shaft can thus be applied to the engine in its present form. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft diesel engine, crankshaft, finite element method, two-stroke engine

Procedia PDF Downloads 183
1208 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 156
1207 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia

Authors: Yihunie Hibstie Asres, Manny Mathuthu

Abstract:

Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.

Keywords: NAA, Yebrage, Chemoga, macro/micronutrient

Procedia PDF Downloads 178
1206 A Novel Methodology for Browser Forensics to Retrieve Searched Keywords from Windows 10 Physical Memory Dump

Authors: Dija Sulekha

Abstract:

Nowadays, a good percentage of reported cybercrimes involve the usage of the Internet, directly or indirectly for committing the crime. Usually, Web Browsers leave traces of browsing activities on the host computer’s hard disk, which can be used by investigators to identify internet-based activities of the suspect. But criminals, who involve in some organized crimes, disable browser file generation feature to hide the evidence while doing illegal activities through the Internet. In such cases, even though browser files were not generated in the storage media of the system, traces of recent and ongoing activities were generated in the Physical Memory of the system. As a result, the analysis of Physical Memory Dump collected from the suspect's machine retrieves lots of forensically crucial information related to the browsing history of the Suspect. This information enables the cyber forensic investigators to concentrate on a few highly relevant selected artefacts while doing the Offline Forensics analysis of storage media. This paper addresses the reconstruction of web browsing activities by conducting live forensics to identify searched terms, downloaded files, visited sites, email headers, email ids, etc. from the physical memory dump collected from Windows 10 Systems. Well-known entry points are available for retrieving all the above artefacts except searched terms. The paper describes a novel methodology to retrieve the searched terms from Windows 10 Physical Memory. The searched terms retrieved in this way can be used for doing advanced file and keyword search in the storage media files reconstructed from the file system recovery in offline forensics.

Keywords: browser forensics, digital forensics, live Forensics, physical memory forensics

Procedia PDF Downloads 118
1205 The Influence of Married Women's Adult Children Care Burden and Stress on Depression: Testing the Moderated Mediating Effect of Satisfaction with Husbands’ Sharing of the Care

Authors: Soo-Bi Lee, Jun Young Jeong, Zehgn Lin, Chenminxi

Abstract:

Background: In South Korea, a problematic phenomenon has recently arisen whereby adult children continue to receive parentalcaregivingin some cases. These phenomena has been shown to affect the mental health of mothers. Study Goals: The purposes of this study are to verify whether the mediating effects of stress on the relationship between a woman’s care burden for their adult children and depression are moderated by their satisfaction about their husbands’ sharing of the caregiving. Methodology: This study analyzed 3,053 married women with adult children using the most recent data from the “Korean Longitudinal Survey of Women & Families 7th(2018)" conducted at the national level. The analysis was conducted using the SPSS Process Macro Model 7 to verify the moderated mediating effects and subsequently confirm their significance based on the bootstrapping method. Results and Implications: (1) Stress was identified a mediating factor in the relationship between the care burden for adult children and depression; and (2) the mediating effects of stress on depression from the burden of caring for adult children are modulated by the woman's satisfaction with her husband’s sharing of the care burden. In other words, the higher the caring burden of adult children, the higher the mother's stress, which increases depression. At this time, the higher the their satisfaction with the husband's share of care in the path of mother's care burden and stress, the lower the mother's stress and, ultimately, the depression be alleviated. Conclusion: Programs that promote the mental health of married women heavily with the caring burden for their adult children, as well as those that improve social awareness regarding husbands' sharing of the care burden, should be implemented. Also, social welfare policy alternatives are needed at the national level to reduce the caring burden caused by adult children.

Keywords: married women, adult children care burden, stress, depression, satisfaction with husbands sharing of the care

Procedia PDF Downloads 207