Search results for: out-of-plane free vibration analysis
25741 Transgression, Resistance and Independent Art in Russia
Authors: Oxana Vasilyeva
Abstract:
This paper draws on research in progress focusing on independent art in the Russian Federation. I am using the concept of independent art to mean art free from state control and established restrictive narratives. The Russian state pursues its interests by supporting or forbidding certain forms of art, and art that promotes values in opposition to the official political course is often forbidden. Arguments presented below draw from fieldwork carried out in Russian cities of Moscow and Saint Petersburg in June – August 2019, which included in-depth interviews with artists. This research explores socially engaged artistic works and their effect on socio-political state of affairs. It argues that artistic works entering public places have a potential to challenge autocratic system and inspire civil society to be critically engaged and to be capable to resist state propaganda. I am focusing on those artists who have a critical stance towards the current Russian political regime and analyzing their works in terms of transgression. By using the framework of transgression I aim to demonstrate how artists step across existing norms with their art influencing political and social order. To show the connection between the factors mentioned above, I will turn to two examples of transgressive aesthetics; one is individual and another is collective. The first example is Konstantin Benkovich, an artist who makes his works out of steel rebar, which is considered to be a symbol of the lack of freedom, as it is usually encountered in prison settings. The second example is a collective art practice called Monstration. It combines techniques of a demonstration and a carnival atmosphere. In 2019 Monstration was held in 30 Russian cities, despite the dissatisfaction of the authorities.Keywords: art, culture, resistance, Russia
Procedia PDF Downloads 13025740 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis
Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay
Abstract:
Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.Keywords: mechanical power, torque, Savonius rotor, wind car
Procedia PDF Downloads 34025739 Using Internal Marketing to Investigate Nursing Staff Job Satisfaction and Turnover Intention
Authors: Tsung Chin Wu, Yu Chen Tsai, Rhay Hung Weng, Weir Sen Lin
Abstract:
In recent years, nursing staff’s lower job satisfaction has led to higher turnover rates, and high turnover rates not only cause medical institution costs to increase but also the quality of medical care to decrease. From the perspective of internal marketing, institution staffs are internal customers, and institutions should focus and meet the needs of staff, so that staff will strive to meet the needs of external customers and provide them with the required care. However, few previous studies have investigated the impact of internal staff satisfaction on external customers. Therefore, this study aimed to conduct job satisfaction surveys on internal staff to investigate the relationship between job satisfaction and quality of medical care through statistical analysis of the study results. The related study results may serve as a reference for healthcare managers. This study was conducted using a questionnaire and the subjects were nursing staff from four hospitals. A total of 600 questionnaires were distributed and 577 valid questionnaires were returned with a response rate of 96.1%. After collecting the data, the reliability and validity of the study variables were confirmed by confirmatory factor analysis. The impact of internal marketing and job satisfaction on turnover intention of nursing staff was analyzed using descriptive analysis, one-way ANOVA, Pearson correlation analysis and multiple regression analysis. The study results showed that there was a significant difference between nursing staff’s job title and ‘professional participation’ and ‘shifts’. There was a significant difference between salary and ‘shifts’ and ‘turnover intention’, as well as between marriage and ‘remuneration’ and ‘turnover intention’. A significant difference was found between professional advancement and ‘professional growth’ and ‘type of leave’, as well as between division of service and ‘shifts’ and ‘turnover intention’. Pearson correlation analysis revealed a significant negative correlation between turnover intention and ‘internal marketing’, ‘interaction’, ‘professional participation’, ‘grasp of environment’, ‘remuneration’ and ‘shifts’, meaning that the higher the satisfaction, the lower the turnover intention. It is recommended that hospitals establish a comprehensive internal marketing mechanism to enhance staff satisfaction and in turn, reduce intention to resign, and the key to increasing job satisfaction is by establishing effective methods of internal communication.Keywords: internal marketing, job satisfaction, turnover intention, nursing staff
Procedia PDF Downloads 19325738 Predictive Analytics of Bike Sharing Rider Parameters
Authors: Bongs Lainjo
Abstract:
The evolution and escalation of bike-sharing programs (BSP) continue unabated. Since the sixties, many countries have introduced different models and strategies of BSP. These include variations ranging from dockless models to electronic real-time monitoring systems. Reasons for using this BSP include recreation, errands, work, etc. And there is all indication that complex, and more innovative rider-friendly systems are yet to be introduced. The objective of this paper is to analyze current variables established by different operators and streamline them identifying the most compelling ones using analytics. Given the contents of available databases, there is a lack of uniformity and common standard on what is required and what is not. Two factors appear to be common: user type (registered and unregistered, and duration of each trip). This article uses historical data provided by one operator based in the greater Washington, District of Columbia, USA area. Several variables including categorical and continuous data types were screened. Eight out of 18 were considered acceptable and significantly contribute to determining a useful and reliable predictive model. Bike-sharing systems have become popular in recent years all around the world. Although this trend has resulted in many studies on public cycling systems, there have been few previous studies on the factors influencing public bicycle travel behavior. A bike-sharing system is a computer-controlled system in which individuals can borrow bikes for a fee or free for a limited period. This study has identified unprecedented useful, and pragmatic parameters required in improving BSP ridership dynamics.Keywords: sharing program, historical data, parameters, ridership dynamics, trip duration
Procedia PDF Downloads 14125737 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University
Authors: Wipada Chaiwchan
Abstract:
This research aims to study behaviors in using social networks of Corporate personnel of Suan Sunandha Rajabhat University. The sample used in the study were two groups: 1) Academic Officer 70 persons and 2) Operation Officer 143 persons were used in this study. The tools in this research consisted of questionnaire which the data were analyzed by using percentage, average (X) and Standard deviation (S.D.) and Independent Sample T-Test to test the difference between the mean values obtained from two independent samples, and One-way anova to analysis of variance, and Multiple comparisons to test that the average pair of different methods by Fisher’s Least Significant Different (LSD). The study result found that the most of corporate personnel have purpose in using social network to information awareness aspect was knowledge and online conference with social media. By using the average more than 3 hours per day in everyday. Using time in working in one day and there are computers connected to the Internet at home, by using the communication in the operational processes. Behaviors using social networks in relation to gender, age, job title, department, and type of personnel. Hypothesis testing, and analysis of variance for the effects of this analysis is divided into three aspects: The use of online social networks, the attitude of the users and the security analysis has found that Corporate Personnel of Suan Sunandha Rajabhat University. Overall and specifically at the high level, and considering each item found all at a high level. By sorting of the social network (X=3.22), The attitude of the users (X= 3.06) and the security (X= 3.11). The overall behaviors using of each side (X=3.11).Keywords: social network, behaviors, social media, computer information systems
Procedia PDF Downloads 39725736 An Ethnographic View of Elementary School English Language Policy Implementation
Authors: Peter Ferguson
Abstract:
In 2018, Japan’s Ministry of Education revised the public elementary school curriculum. As part of widespread reforms, the recent Course of Study established English as an academic subject in Grades 5 and 6 plus lowered the starting age of 'foreign language activities' to Grade 3. These changes were implemented in April 2020. This presentation will examine the process and effects that policy implementation had on schools and teachers. A critical analysis of the 2018 Course of Study policy documents revealed several discourses were expressed concerning not only English education and foreign language acquisition, but that larger political and socioeconomic ideological beliefs on globalization, language, nation, culture, and identity were also articulated. Using excerpts from document analysis, the presenter will demonstrate how competing discourses were expressed in policy texts. Data from interviews with national policymakers also exposed several challenges policymakers faced as they tried to balance competing discourses and articulate important pedagogical concepts while having their voices heard. Findings show that some stakeholders were marginalized during the processes of policy creation, transmission, and implementation. This presentation is part of a larger multiple case study that utilized ethnography of language policy and critical analysis of discourse to examine how English education language policy was implemented into the national elementary school curriculum in Japan, and how stakeholders at the various educational levels contended with the creation, interpretation, and appropriation of the language policy.Keywords: ethnography of language policy, elementary school EFL, language ideologies, discourse analysis
Procedia PDF Downloads 12325735 Analysis of Iran-Turkey Relations Based on Environmental Geopolitics
Authors: Farid Abbasi
Abstract:
Geographical spaces have different relations with each other, and especially neighboring geographical spaces have more relations than other spaces due to their proximity. Meanwhile, various parameters affect the relationships between these spaces, such as environmental parameters. These parameters have become important in recent decades, affecting the political relations of the actors in neighboring spaces. The Islamic Republic of Iran and the Republic of Turkey, as two actors in the region, political relations seem to have been affected to some extent by environmental issues. Based on this, the present study tries to examine and analyze the political relations between the two countries from an environmental, and geopolitical perspective. The method of this research is descriptive-analytical. The method of data analysis is based on library and field information (questionnaire) in the form of content analysis and statistics through the Mick Mac software system and Scenario Wizard. The results of studies and analysis of theories show that 35 indicators, directly and indirectly, affect Iran-Turkey relations from an environmental, and geopolitical perspective, which are in the form of five dimensions (water resources, soil resources, Vegetation, climate, living species). Using the Mick Mac method, 9 factors were extracted as key factors affecting Iran-Turkey relations, and in the process of analyzing research scenarios, 10100 possible situations were presented by scenario wizard software. 9 strong scenarios with 3 scenarios of favorable and very favorable situations, 3 scenarios with moderate situations and also 3 scenarios with critical situations and catastrophes according to Iran-Turkey relations from the environmental aspect are presented.Keywords: geopolitics, relations, Iran, Turkey, environment
Procedia PDF Downloads 15425734 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 27025733 Enhancing Efficiency of Building through Translucent Concrete
Authors: Humaira Athar, Brajeshwar Singh
Abstract:
Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete
Procedia PDF Downloads 13325732 Effects of Opuntia ficus-indica var. Saboten on Glucose Uptake and Insulin Sensitivity in Pancreatic β Cell
Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim
Abstract:
The prickly pear cactus (Opuntia ficus-indica) has a global distribution and have been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. However, very little information is currently available for their mechanism. The prikly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, southwestern region of Korea, and used as a functional food. Present study investigated the effects of OFS on pancreatic β-cell function using pancreatic islet β cells (HIT cell). Alpha-glucosidase inhibition, glucose uptake, insulin secretion, insulin sensitivity, and pancreatic β cell proliferation were determined. The inhibitory effect of ethanol extract of OFS stem on α-glucosidase enzyme was measured in a cell free system. Glucose uptake was determined using fluorescent glucose analogue, 2-NBDG. Insulin secretion was measured by ELISA assay. Cell proliferation was measured by MTT assay. Ethanol extracts of OFS dose-dependently inhibited α-glucosidase activity as well as glucose uptake. Insulinotrophic effect of OFS extract was observed at high glucose media in pancreatic β-islet cells. Furthermore, pancreatic β cell regeneration was also observed.These results suggest that OFS mediates the antidiabetic activity mainly via α-glucosidase inhibition, glucose uptake, and improved insulin sensitivity.Keywords: prickly pear cactus, Opuntia ficus-indica var. Saboten, pancreatic islet HIT cells, α-glucosidase, glucose uptake, insulinotrophic
Procedia PDF Downloads 46925731 Analysis on Financial Status and Operational Performance of Suan Sunandha Rajabhat University in 3 Fiscal Years (2011-2013)
Authors: Anocha Kimkong, Natnichar Kleebbuabarn
Abstract:
This research work has the objective to analyze the financial status and operational performance of Suan Sunandha Rajabhat University (SSRU) in 3 fiscal years (2011-2013). The tool used is a form to record financial statements and balances of the university. The analysis is based on the calculation that regards the figures in the fiscal year of 2011 as the 100% bases to be compared with the same figures in the fiscal years of 2012 and 2013, which are multiplied by 100 and divided by the base figures. The outcomes are the percentages of each year, which can reflect the rising, stable, and falling trends. The results from the analysis reveal that SSRU’s financial status is getting better because the gross assets, debts and accumulated cash are increasing in the fiscal years of 2012 and 2013. Concerning the operational performance, the university’s incomes and expenses are rising from the fiscal year of 2011. This makes the university’s incomes grow higher than expenses.Keywords: financial status, operational performance, Suan Sunandha Rajabhat University, balances
Procedia PDF Downloads 38625730 Neo-Adjuvant B-CAT Chemotherapy in Triple Negative Breast Cancer
Authors: Muneeb Nasir, Misbah Masood, Farrukh Rashid, Abubabakar Shahid
Abstract:
Introduction: Neo-adjuvant chemotherapy is a potent option for triple negative breast cancer (TNBC) as these tumours lack a clearly defined therapeutic target. Several recent studies lend support that pathological complete remission (pCR) is associated with improved disease free survival (DFS) and overall survival (OS) and could be used as surrogate marker for DFS and OS in breast cancer patients. Methods: We have used a four-drug protocol in T3 and T4 TNBC patients either N+ or N- in the neo-adjuvant setting. The 15 patients enrolled in this study had a median age of 45 years. 12 patients went on to complete four planned cycles of B-CAT protocol. The chemotherapy regimen included inj. Bevacizumab 5mg/kg D1, inj. Adriamycin 50mg/m2 D1 and Docetaxel 65mg/m2 on D1. Inj. Cisplatin 60mg/m2 on D2. All patients received GCF support from D4 to D9 of each cycle. Results: Radiological assessment using ultrasound and PET-CT revealed a high percentage of responses. Radiological CR was documented in half of the patients (6/12) after four cycles. Remaining patients went on to receive 2 more cycles before undergoing radical surgery. pCR was documented in 7/12 patients and 3 more had a good partial response. The regimen was toxic and grade ¾ neutropenia was seen in 58% of patients. Four episodes of febrile neutropenia were reported and managed. Non-hematatological toxicities were common with mucositis, diarrhea, asthenia and neuropathy topping the list. Conclusion: B-CAT is a very active combination with very high pCR rates in TNBC. Toxicities though frequent, were manageable on outpatient basis. This protocol warrants further investigation.Keywords: B-CAT:bevacizumab, cisplatin, adriamycin, taxotere, CR: complete response, pCR: pathological complete response, TNBC: triple negative breast cancer
Procedia PDF Downloads 26225729 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction
Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li
Abstract:
Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable
Procedia PDF Downloads 8025728 Interference among Lambsquarters and Oil Rapeseed Cultivars
Authors: Reza Siyami, Bahram Mirshekari
Abstract:
Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.Keywords: green cover percentage, independent variable, interference, regression
Procedia PDF Downloads 42525727 Alleviation of Salt Stress Effects on Solanum lycopersicum (L.) Plants Grown in a Saline Soil by Foliar Spray with Salicylic Acid
Authors: Saad Howladar
Abstract:
Salinity stress is one of the major abiotic stresses, restricting plant growth and crop productivity in different world regions, especially in arid and semi-arid regions, including Saudi Arabia. The tomato plant is proven to be moderately sensitive to salt stress. Therefore, two field experiments were conducted using tomato plants (Hybrid 6130) to evaluate the effect of four concentrations of salicylic acid (SA; 0, 20, 40, and 60 µM) applied as foliar spraying in improving plant tolerance to saline soil conditions. Tomato plant growth, yield, osmoprotectants, chloeophyll fluorescence, and ionic contents were determined. The results of this study displayed that growth and yield components and physiological attributes of water-sprayed plants (the control) grown under saline soil conditions were negatively impacted. However, under the adverse conditions of salinity, SA-treated plants had enhanced growth and yield components of tomato plants compared to the control. Free proline, soluble sugars, chlorophyll fluorescence, relative water content, membrane stability index, and nutrients contents (e.g., N, P, K⁺, and Ca²⁺) were also improved significantly, while Na⁺ content was significantly reduced in SA-applied tomato plants. SA at 40 µM was the best treatment, which could be recommended to use for salt-stressed tomato plants to enable them to tolerate the adverse conditions of saline soils.Keywords: tomatoes, salt stress, chlorophyll fluorescence, dehydration tolerance, osmoprotectants
Procedia PDF Downloads 11325726 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method
Authors: Anung Style Bukhori, Ani Dijah Rahajoe
Abstract:
Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.Keywords: poverty, classification, naïve bayes, Indonesia
Procedia PDF Downloads 6525725 Web-Based Cognitive Writing Instruction (WeCWI): A Theoretical-and-Pedagogical e-Framework for Language Development
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI)’s contribution towards language development can be divided into linguistic and non-linguistic perspectives. In linguistic perspective, WeCWI focuses on the literacy and language discoveries, while the cognitive and psychological discoveries are the hubs in non-linguistic perspective. In linguistic perspective, WeCWI draws attention to free reading and enterprises, which are supported by the language acquisition theories. Besides, the adoption of process genre approach as a hybrid guided writing approach fosters literacy development. Literacy and language developments are interconnected in the communication process; hence, WeCWI encourages meaningful discussion based on the interactionist theory that involves input, negotiation, output, and interactional feedback. Rooted in the e-learning interaction-based model, WeCWI promotes online discussion via synchronous and asynchronous communications, which allows interactions happened among the learners, instructor, and digital content. In non-linguistic perspective, WeCWI highlights on the contribution of reading, discussion, and writing towards cognitive development. Based on the inquiry models, learners’ critical thinking is fostered during information exploration process through interaction and questioning. Lastly, to lower writing anxiety, WeCWI develops the instructional tool with supportive features to facilitate the writing process. To bring a positive user experience to the learner, WeCWI aims to create the instructional tool with different interface designs based on two different types of perceptual learning style.Keywords: WeCWI, literacy discovery, language discovery, cognitive discovery, psychological discovery
Procedia PDF Downloads 56525724 Genetic Diversity of Sugar Beet Pollinators
Authors: Ksenija Taški-Ajdukovic, Nevena Nagl, Živko Ćurčić, Dario Danojević
Abstract:
Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin.Keywords: auto fertility, genetic diversity, pollinator, SSR, sugar beet
Procedia PDF Downloads 46325723 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC
Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad
Abstract:
In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.Keywords: MAX phase, microstructures, composites, hardness, SEM
Procedia PDF Downloads 35125722 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia
Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay
Abstract:
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield
Procedia PDF Downloads 9225721 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 19025720 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations
Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn
Abstract:
Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis
Procedia PDF Downloads 45225719 Subway Stray Current Effects on Gas Pipelines in the City of Tehran
Authors: Mohammad Derakhshani, Saeed Reza Allahkarama, Michael Isakhani-Zakaria, Masoud Samadian, Hojjat Sharifi Rasaey
Abstract:
In order to investigate the effects of stray current from DC traction systems (subway) on cathodically protected gas pipelines, the subway and the gas network maps in the city of Tehran were superimposed and a comprehensive map was prepared. 213 intersections and about 100150 meters of parallel sections of gas pipelines were found with respect to the railway right of way which was specified for field measurements. The potential measurements data were logged for one hour in each test point. 24-hour potential monitoring was carried out in selected test points as well. Results showed that dynamic stray current from subway on pipeline potential appears as fluctuations in its static potential that is visible in the diagrams during night periods. These fluctuations can cause the pipeline potential to exit the safe zone and lead to corrosion or overprotection. In this study, a maximum potential shift of 100 mv in the pipe-to-soil potential was considered as a criterion for dynamic stray current effective presence. Results showed that a potential fluctuation range between 100 mV to 3 V exists in measured points on pipelines which exceeds the proposed criterion and needs to be investigated. Corrosion rates influenced by stray currents were calculated using coupons. Results showed that coupon linked to the pipeline in one of the locations at region 1 of the city of Tehran has a corrosion rate of 4.2 mpy (with cathodic protection and under influence of stray currents) which is about 1.5 times more than free corrosion rate of 2.6 mpy.Keywords: stray current, DC traction, subway, buried Pipelines, cathodic protection list
Procedia PDF Downloads 82725718 Cultural and Group Understandings of Disability and Sexuality
Authors: Luke Galvani
Abstract:
The cultural representations of people with disabilities are frequently biased which can lead to a general misunderstanding of disability. Representations of disabled deviance are especially problematic given that they typify or generally abstract disability as being abnormal, which then begin to take root in the cultural mind. This study utilizes critical discourse analysis to investigate how discourses of disabled sexual deviance are promoted within two major films that portray disabled sexual subjects. The findings indicate that perceptions of disabled sexual deviance are heightened by cinematic representations of sex and disability, which characterize disabled sexual expression as being undesirable due to the ephemeral and abnormal qualities ascribed to it.Keywords: deviance, disability, discourse analysis, sexuality
Procedia PDF Downloads 17225717 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 20625716 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran
Authors: Reza Zakerinejad
Abstract:
Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.Keywords: TreeNet model, terrain analysis, Golestan Province, Iran
Procedia PDF Downloads 54125715 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 43125714 Hidrothermal Alteration Study of Tangkuban Perahu Craters, and Its Implication to Geothermal Conceptual Model
Authors: Afy Syahidan Achmad
Abstract:
Tangkuban Perahu is located in West Java, Indonesia. It is active stratovolcano type and still showing hidrothermal activity. The main purpose of this study is to find correlation between subsurface structure and hidrothermal activity on the surface. Using topographic map, SRTM images, and field observation, geological condition and alteration area was mapped. Alteration sample analyzed trough petrographic analysis and X-Ray Diffraction (XRD) analysis. Altered rock in study area showing white-yellowish white colour, and texture changing variation from softening to hardening because of alteration by sillica and sulphur. Alteration mineral which can be observed in petrographic analysis and XRD analysis consist of crystobalite, anatase, alunite, and pyrite. This mineral assemblage showing advanced argillic alteration type with West-East alteration area orientation. Alteration area have correlation with manifestation occurance such as steam vents, solfatara, and warm to hot pools. Most of manifestation occured in main crater like Ratu Crater and Upas crater, and parasitic crater like Domas Crater and Jarian Crater. This manifestation indicates permeability in subsurface which can be created trough structural process with same orientation. For further study geophysics method such as Magneto Telluric (MT) and resistivity can be required to find permeability zone pattern in Tangkuban Perahu subsurface.Keywords: alteration, advanced argillic, Tangkuban Perahu, XRD, crystobalite, anatase, alunite, pyrite
Procedia PDF Downloads 42425713 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 13425712 Serum Levels of Carnitine in Multiple Sclerosis Patients in Comparison with Healthy People and its Association with Fatigue Severity
Authors: Mohammad Hossein Harirchian, Siavash Babaie, Nika keshtkaran, Sama Bitarafan
Abstract:
Background: Fatigue is a common complaint of multiple sclerosis (MS) patients, adversely affecting their quality of life. There is a lot of evidence showing that Carnitine deficiency is linked to fatigue development and severity in some conditions. This study aimed to compare the levels of Free L-Carnitine (FLC) between MS patients and healthy people and evaluate its association with the severity of fatigue. Methods: This case-control study included 30 patients with relapsing-remitting MS (RRMS) in 2 sex-matched equal-number groups according to the presence or absence of fatigue and 30 sex-matched healthy people in the control group. In addition, between two patient groups, we compared Serum level of FLC between the patient and healthy group. Fatigue was scored using two valid questionnaires of fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS). In addition, association between Serum level of FLC and fatigue severity was evaluated in MS patients. Results: There was no significant difference in serum levels of FLC between MS patients and healthy people. The patients with fatigue had a significantly lower FLC (mg/dl) value than patients without fatigue (22.53 ± 15.84 vs. 75.36 ± 51.98, P < 0.001). The mean value of FSS and MFIS in patients with fatigue were 48.80±8.55 and 62.87 ± 13.63, respectively, which was nearly two-fold higher than group without fatigue (P < 0.001). There was a negative correlation between the serum level of FLC and fatigue severity scales (Spearman rank correlation= 0.76, P < 0.001). Conclusion: We showed healthy people and MS patients were not different in levels of FLC. In addition, patients with lower serum levels of FLC might experience more severe fatigue. Therefore, this could clarify that supplementation with L-Carnitine might be considered as a complementary treatment for MS-related fatigue.Keywords: fatigue, multiple sclerosis, L-carnitine, modified fatigue impact scale
Procedia PDF Downloads 144