Search results for: wastewater characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3401

Search results for: wastewater characterization

2921 Characterization and Comparative Analysis of North Bengal Sand

Authors: Marzia Hoque Tania, Oishy Roy, ASW Kurny, Fahmida Gulshan

Abstract:

This paper presents results of the investigation on the characterization of silica sand of northern region of Bangladesh on the basis of material composition, particle shape, and size, density, transportation, crystallinity, etc. before and after upgradation. The raw sand samples collected from Nilphamari and Lalmonirhat district were studied and compared for the prospect silica as a high valued commodity rather than heavy minerals. The raw sand particles were colorful in appearance with varying particle size distribution. Scanning Electron Microscopy (SEM) showed uniformity in grain size and mineralogical composition. X-ray fluorescence (XRF) analysis indicated the silica content of the as-received sample to be 75%. Thermogravimetric and Differential Thermal Analysis (DTA) did not detect the presence of any organic material. These tests revealed the sample to be alpha-quartz. Samples were washed with organic and inorganic acid with a combination of varying rotation speed, concentration, solid-liquid ratio. Experiments showed the silica content could be enhanced to more than 85% by washing with 15% sulphuric acid in room temperature. Beneficiation can be improved in further work considering the effect of varying temperature or advanced technology.

Keywords: beneficiation, characterization, commercial grade sand, glass sand, silica, upgradation

Procedia PDF Downloads 129
2920 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera

Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim

Abstract:

Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm).

Keywords: Non-Destructive Test (NDT), thermal characteristic, thermographic camera, Carbon Fiber Reinforced Plastics(CFRP).

Procedia PDF Downloads 526
2919 Gene Cloning and Expression of Azoreductases from Azo-Degraders Lysinibacillus macrolides and Bacillus coagulans Isolated from Egyptian Industrial Wastewater

Authors: Omaima A. Sharaf, Wafaa M. Abd El-Rahim, Hassan Moawad, Michael J. Sadowsky

Abstract:

Textile industry is one of the important industries in the worldwide. It is known that the eco-friendly industrial and agricultural activities are significant for socio-economic stability of all countries. The absence of appropriate industrial waste water treatments is essential barrier for sustainable development in food and agricultural sectors especially in developing country like Egypt. Thus, the development of enzymatic bioremediation technology for textile dye removal will enhance the collaboration between scientists who develop the technology and industry where this technology will be implemented towards the safe disposal of the textile dye wastes. Highly efficient microorganisms are of most importance in developing and using highly effective biological treatment processes. Bacterial degradation of azo dyes is generally initiated by an enzymatic step that involves cleavage of azo linkages, usually with the aid of an azoreductase as electron donor. Thus, expanding the spectrum of microorganisms with high enzymatic activities as azoreductases and discovering novel azo-dye degrading enzymes, with enhanced stability and superior catalytic properties, are necessary for many environmental and industrial applications. Consequently, the use of molecular tools has become increasingly integrated into the understanding of enzyme properties and characterization. Researchers have utilized a gene cloning and expression methods as a tool to produce recombinant protein for decolorizing dyes more efficiently. Thus, presumptive evidence for the presence of genes encoding azoreductases in the genomes of selected local, and most potent azo-degrading strains were obtained by using specific oligonucleotides primers. These potent strains have been isolated from textile industrial wastewater in Egypt and identified using 16S rRNA sequence analysis as 'Lysinibacillus macrolidesB8, Brevibacillus parabrevisB11, Bacillus coagulansB7, and B. cereusB5'. PCR products of two full length genes designated as (AZO1;621bp and AZO2;534bp) were detected. BLASTx results indicated that AZO1 gene was corresponding to predicted azoreductase from of Bacillus sp. ABP14, complete genome, multispecies azoreductase [Bacillus], It was submitted to the gene bank by an accession no., BankIt2085371 AZO1 MG923210 (621bp; 207 amino acids). AZO1 was generated from the DNA of our identified strains Lysinibacillus macrolidesB8. On the other hand, AZO2 gene was corresponding to a predicted azoreductase from Bacillus cereus strain S2-8. Gene bank accession no. was BankIt2085839 AZO2 MG932081 (534bp;178 amino acids) and it was amplified from our Bacillus coagulansB7. Both genes were successfully cloned into pCR2.1TOPO (Invitrogen) and in pET28b+ vectors, then they transformed into E. coli DH5α and BL21(DE3) cells for heterologous expression studies. Our recombinant azoreductases (AZO1&AZO2) exhibited potential enzyme activity and efficiently decolorized an azo dye (Direct violet). They exhibited pH stability between 6 and 8 with optimum temperature up to 60°C and 37 °C after induction by 1mM and 1.5mM IPTG, for both AZO1 &AZO2, respectively. These results suggested that further optimization and purification of these recombinant proteins by using different heterologous expression systems will give great potential for the sustainable utilization of these recombinant enzymes in several industrial applications especially in wastewater treatments.

Keywords: azoreductases, decolorization, enzyme activity, gene cloning and expression

Procedia PDF Downloads 118
2918 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 146
2917 Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50

Authors: Kah Yan How, Peh Fern Ong, Keang Peng Song

Abstract:

Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis.

Keywords: Porphyromonas gingivalis, periodontal diseases, HmuX, protein characterization

Procedia PDF Downloads 212
2916 Morphostructural Characterization of Zinc and Manganese Nano-Oxides

Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu

Abstract:

The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.

Keywords: characterization, morphological, nano-oxides, structural

Procedia PDF Downloads 271
2915 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 343
2914 Understanding the Utilization of Luffa Cylindrica in the Adsorption of Heavy Metals to Clean Up Wastewater

Authors: Akanimo Emene, Robert Edyvean

Abstract:

In developing countries, a low cost method of wastewater treatment is highly recommended. Adsorption is an efficient and economically viable treatment process for wastewater. The utilisation of this process is based on the understanding of the relationship between the growth environment and the metal capacity of the biomaterial. Luffa cylindrica (LC), a plant material, was used as an adsorbent in adsorption design system of heavy metals. The chemically modified LC was used to adsorb heavy metals ions, lead and cadmium, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion concentration, ionic strength and pH of solution were studied. The chemical nature and surface area of the tissues adsorbing heavy metals in LC biosorption systems were characterised by using electron microscopy and infra-red spectroscopy. It showed an increase in the surface area and improved adhesion capacity after chemical treatment. Metal speciation of the metal ions showed the binary interaction between the ions and the LC surface as the pH increases. Maximum adsorption was shown between pH 5 and pH 6. The ionic strength of the metal ion solution has an effect on the adsorption capacity based on the surface charge and the availability of the adsorption sites on the LC. The nature of the metal-surface complexes formed as a result of the experimental data were analysed with kinetic and isotherm models. The pseudo second order kinetic model and the two-site Langmuir isotherm model showed the best fit. Through the understanding of this process, there will be an opportunity to provide an alternative method for water purification. This will be provide an option, for when expensive water treatment technologies are not viable in developing countries.

Keywords: adsorption, luffa cylindrica, metal-surface complexes, pH

Procedia PDF Downloads 78
2913 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 26
2912 Opto-Mechanical Characterization of Aspheric Lenses from the Hybrid Method

Authors: Aliouane Toufik, Hamdi Amine, Bouzid Djamel

Abstract:

Aspheric optical components are an alternative to the use of conventional lenses in the implementation of imaging systems for the visible range. Spherical lenses are capable of producing aberrations. Therefore, they are not able to focus all the light into a single point. Instead, aspherical lenses correct aberrations and provide better resolution even with compact lenses incorporating a small number of lenses. Metrology of these components is very difficult especially when the resolution requirements increase and insufficient or complexity of conventional tools requires the development of specific approaches to characterization. This work is part of the problem existed because the objectives are the study and comparison of different methods used to measure surface rays hybrid aspherical lenses.

Keywords: manufacture of lenses, aspherical surface, precision molding, radius of curvature, roughness

Procedia PDF Downloads 459
2911 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization

Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries

Abstract:

Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.

Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning

Procedia PDF Downloads 259
2910 Aggregation-Induced-Active Stimuli-Responsive Based Nano-Objects for Wastewater Treatment Application

Authors: Parvaneh Eskandari, Rachel O'Reilly

Abstract:

In the last years, controlling the self-assembly behavior of stimuli-responsive nano-objects, including micelles, vesicles, worm-like, etc., at different conditions is considered a pertinent challenge in the polymer community. The aim of the project was to synthesize aggregation-induced emission (AIE)-active stimuli-responsive polymeric nano-objects to control the self-assemblies morphologies of the prepared nano-objects. Two types of nanoobjects, micelle and vesicles, including PDMAEMA-b-P(BzMA-TPEMA) [PDMAEMA: poly(N,Ndimethylaminoethyl methacrylate); P(BzMA-TPEMA): poly[benzyl methacrylate-co- tetraphenylethene methacrylate]] were synthesized by using reversible addition−fragmentation chain-transfer (RAFT)- mediated polymerization-induced self-assembly (PISA), which combines polymerization and self-assembly in a single step. Transmission electron microscope and dynamic light scattering (DLS) analysis were used to confirm the formed self-assemblies morphologies. The controlled self-assemblies were applied as nitrophenolic compounds (NPCs) adsorbents from wastewater, thanks to their CO2-responsive part, PDMAEMA. Moreover, the fluorescence-active part of the prepared nano-objects, P(BzMA-TPEMA), played a key role in the detection of the NPCs at the aqueous solution. The optical properties of the prepared nano-objects were studied by UV/Vis and fluorescence spectroscopies. For responsivity investigations, the hydrodynamic diameter and Zeta-potential (ζ-potential) of the sample's aqueous solution were measured by DLS. In the end, the prepared nano-objects were used for the detection and adsorption of different NPCs.

Keywords: aggregation-induced emission polymers, stimuli-responsive polymers, reversible addition−fragmentation chain-transfer polymerization, polymerization-induced self-assembly, wastewater treatment

Procedia PDF Downloads 63
2909 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria

Procedia PDF Downloads 251
2908 Characterization of Stabilized Earth in the Construction Field

Authors: Sihem Chaibeddra, Fatoum Kharchi

Abstract:

This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material.

Keywords: behavior, characterization, construction, earth, stabilization

Procedia PDF Downloads 232
2907 Structural, Optical and Electrical Thin-Film Characterization Using Graphite-Bioepoxy Composite Materials

Authors: Anika Zafiah M. Rus, Nur Munirah Abdullah, M. F. L. Abdullah

Abstract:

The fabrication and characterization of composite films of graphite- bioepoxy is described. Free-standing thin films of ~0.1 mm thick are prepared using a simple solution mixing with mass proportion of 7/3 (bioepoxy/graphite) and drop casting at room temperature. Fourier transform infra-red spectroscopy (FTIR) and Ultraviolet-visible (UV-vis) spectrophotometer are performed to evaluate the changes in chemical structure and adsorption spectra arising with the increasing of graphite weight loading (wt.%) into the biopolymer matrix. The morphologic study shows a homogeneously dispersed and strong particle bonding between the graphite and the bioepoxy, with conductivity of the film 103 S/m, confirming the efficiency of the processes.

Keywords: absorbance peak, biopolymer, graphite- bioepoxy composites, particle bonding

Procedia PDF Downloads 501
2906 Characterization of Graphene Oxide Coated Gold Electrodes for Bioimpedance Measurements

Authors: Fatma Gülden Şi̇mşek, Osman Meli̇h Can, Mehmet Yumak, Bora Gari̇pcan, Yekta Ülgen

Abstract:

In this study, the impedance spectroscopy is used as a detection tool in order to characterize surface coating with graphene oxide. Gold electrodes are produced by standard lithography procedures and then coated with graphene oxide using self-assembly method. The impedance of redox solution through bare gold electrodes and graphene oxide coated gold electrodes is measured in the low and high frequency range. The graphene oxide coating reduces the impedance value of the gold electrode and this reduction is distinguishable in the low-frequency range.

Keywords: bioimpedance, electrode characterization, graphene oxide, gold electrodes, impedance spectroscopy

Procedia PDF Downloads 535
2905 Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves

Authors: Sadiq Sani, Muhammad B. Ibrahim

Abstract:

Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption.

Keywords: adsorption isotherms, methyl orange, neem leaves, watermelon rinds

Procedia PDF Downloads 260
2904 UV Light-Activated Peroxydisulfate Oxidation of Imidacloprid in Synthetic Wastewater

Authors: Yi-An Liao, Lu-Wei Kuo, Yu-Jen Shih, Yao-Hui Huang

Abstract:

Abstract—Imidacloprid (IMI, a widely used pesticide, iImidacloprid (IMI), a widely used pesticide, is known to affect the bee populations. A sulfate radical-based oxidation method was utilized to remove the commercial pesticide consisted of IMI, dimethylacetamide, N-methyl-2-pyrrolidone, and methanol (TOC0 = 497 ppm). The experimental results evidenced that sulfate radicals created by UV activation (254nm, 6.4 mW/cm2) of S2O82- could remove 97% of total organic carbon (TOC) from the synthetic wastewater in 4 h using 120 mM of oxidant dosage. The dose of oxidant, temperature and the light flux were the key factors to further improve the mineralization efficiency, while the ferrous ions decreased the efficacy of UV/S2O82- reaction due to the competition of UV-adsorption by complex formation of FeSO4+.s known to affect the bee populations. A sulfate radical-based oxidation method was utilized to remove the commercial pesticide consisted of IMI, dimethylacetamide, N-methyl-2-pyrrolidone, and methanol (TOC0 = 497 ppm). The experimental results evidenced that sulfate radicals created by UV activation (254nm, 6.4 mW/cm2) of S2O82- could remove 97% of total organic carbon (TOC) from the synthetic wastewater in 4 h using 120 mM of oxidant dosage. The dose of oxidant, temperature and the light flux were the key factors to further improve the mineralization efficiency, while the ferrous ions decreased the efficacy of UV/S2O82- reaction due to the competition of UV-adsorption by complex formation of FeSO4+.

Keywords: organic nitrogen, photochemical oxidation, imidacloprid, UV-persulfate, mineralization

Procedia PDF Downloads 199
2903 Extraction and Characterization of Kernel Oil of Acrocomia Totai

Authors: Gredson Keif Souza, Nehemias Curvelo Pereira

Abstract:

Kernel oil from Macaúba is an important source of essential fatty acids. Thus, a new knowledge of the oil of this species could be used in new applications, such as pharmaceutical drugs based in the manufacture of cosmetics, and in various industrial processes. The aim of this study was to characterize the kernel oil of macaúba (Acrocomia Totai) at different times of their maturation. The physico-chemical characteristics were determined in accordance with the official analytical methods of oils and fats. It was determined the content of water and lipids in kernel, saponification value, acid value, water content in the oil, viscosity, density, composition in fatty acids by gas chromatography and molar mass. The results submitted to Tukey test for significant value to 5%. Found for the unripe fruits values superior to unsaturated fatty acids.

Keywords: extraction, characterization, kernel oil, acrocomia totai

Procedia PDF Downloads 348
2902 Water Reclamation from Synthetic Winery Wastewater Using a Fertiliser Drawn Forward Osmosis System Evaluating Aquaporin-Based Biomimetic and Cellulose Triacetate Forward Osmosis Membranes

Authors: Robyn Augustine, Irena Petrinic, Claus Helix-Nielsen, Marshall S. Sheldon

Abstract:

This study examined the performance of two commercial forward osmosis (FO) membranes; an aquaporin (AQP) based biomimetic membrane, and cellulose triacetate (CTA) membrane in a fertiliser is drawn forward osmosis (FDFO) system for the reclamation of water from synthetic winery wastewater (SWW) operated over 24 hr. Straight, 1 M KCl and 1 M NH₄NO₃ fertiliser solutions were evaluated as draw solutions in the FDFO system. The performance of the AQP-based biomimetic and CTA FO membranes were evaluated in terms of permeate water flux (Jw), reverse solute flux (Js) and percentage water recovery (Re). The average water flux and reverse solute flux when using 1 M KCl as a draw solution against controlled feed solution, deionised (DI) water, was 11.65 L/m²h and 3.98 g/m²h (AQP) and 6.24 L/m²h and 2.89 g/m²h (CTA), respectively. Using 1 M NH₄NO₃ as a draw solution yielded average water fluxes and reverse solute fluxes of 10.73 L/m²h and 1.31 g/m²h (AQP) and 5.84 L/m²h and 1.39 g/m²h (CTA), respectively. When using SWW as the feed solution and 1 M KCl and 1 M NH₄NO₃ as draw solutions, respectively, the average water fluxes observed were 8.15 and 9.66 L/m²h (AQP) and 5.02 and 5.65 L/m²h (CTA). Membrane water flux decline was the result of a combined decrease in the effective driving force of the FDFO system, reverse solute flux and organic fouling. Permeate water flux recoveries of between 84-98%, and 83-89% were observed for the AQP-based biomimetic and CTA membrane, respectively after physical cleaning by flushing was employed. The highest water recovery rate of 49% was observed for the 1 M KCl fertiliser draw solution with AQP-based biomimetic membrane and proved superior in the reclamation of water from SWW.

Keywords: aquaporin biomimetic membrane, cellulose triacetate membrane, forward osmosis, reverse solute flux, synthetic winery wastewater and water flux

Procedia PDF Downloads 158
2901 Magneto-Electric Behavior a Couple Aluminum / Steel Xc48

Authors: A. Mekroud, A. Khemis, M. S. Mecibah

Abstract:

The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.

Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction

Procedia PDF Downloads 414
2900 Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics

Authors: C. R. Ríos-Soberanis, V. M. Moo-Huchin, R. J. Estrada-Leon, E. Perez-Pacheco

Abstract:

Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends.

Keywords: biomaterials, characterization techniques, natural resource, starch

Procedia PDF Downloads 310
2899 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia PDF Downloads 309
2898 Characterization of the Soils of the Edough Massif (North East Algeria)

Authors: Somia Lakehal Ayat, Ibtissem Samai, Srara Lakehal Ayat, Chaima Dahmani

Abstract:

The aim of this work relates to the physicochemical diversity and the characterization of the different types of soils of the edough massif (North East of Algeria) and to the evaluation and characterization of the existing organic matter as well as to the evolution. and the dynamics of the latter, also on its influence on changes in the physical properties of soils. In order to know the soil properties of seraidi forest, we established a stratified sampling plan. The results obtained show that we are in the presence of a great diversity of soils, such as neutral to alkaline, whose adsorbent complex is sufficiently saturated. Also, the presence of limestone offers the soil a fairly significant buffering capacity. In our study region, the texture of the soils is varied between clayey and silty, where it offers medium porosity, there is a strong accumulation of organic matter, therefore soils rich in organic matter.The fractionation of the organic matter of the soils allowed to obtain a very high rate of humification. The soil characteristics of the edough massif (North East of Algeria) are controlled by the contribution of organic matter, which presents a dynamic and an important evolution and which varies with the climatic conditions and the nature and the type of plant formation, and these the latter have a capital and important role in the rate of mineralization of organic matter.

Keywords: organic matter, soil, foresty, diversity, mineralization

Procedia PDF Downloads 76
2897 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 123
2896 Application of Molecular Markers for Crop Improvement

Authors: Monisha Isaac

Abstract:

Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane.

Keywords: molecular markers, crop productivity, genetic diversity, genotype

Procedia PDF Downloads 504
2895 Piezoelectric Micro-generator Characterization for Energy Harvesting Application

Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima

Abstract:

This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.

Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam

Procedia PDF Downloads 457
2894 Investigation of Modified Microporous Materials for Environmental Depollution

Authors: Souhila Bendenia, Chahrazed Bendenia, Hanaa Merad-Dib, Sarra Merabet, Samia Moulebhar, Sid Ahmed Khantar

Abstract:

Today, environmental pollution is a major concernworldwide, threateninghumanhealth. Various techniques have been used, includingdegradation, filtration, advancedoxidationprocesses, ion exchange, membrane processes, and adsorption. The latter is one of the mostsuitablemethods, usinghighly efficient materials. In this study, NaX zeolite was modified with Cu or Ni at various rates. Following ion exchange, the samples were characterized by XRD, BET and SEM/EDX. After characterization, the exchanged zeolites were used for adsorption of various pollutants as CO2. Different thermodynamic parameters were studied such as Qst. XRD results show that the most intense peaks characteristic of 13X persist after the exchange reaction for all samples. The SEM images of our samples have uniform and regular crystal shapes. The results show that ion exhange with Cu or Ni affect the textural properties of X zeolites and prove that the exchange zeolites can be used as an adsorbent for depollution.

Keywords: X zeolites (NaX), ion exchange, characterization, adsorption

Procedia PDF Downloads 67
2893 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1

Authors: Mohamed Mehdi Kadri

Abstract:

The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.

Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin

Procedia PDF Downloads 90
2892 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 217