Search results for: vector space model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19817

Search results for: vector space model

19337 Assessing the Role of Human Mobility on Malaria Transmission in South Sudan

Authors: A. Y. Mukhtar, J. B. Munyakazi, R. Ouifki

Abstract:

Over the past few decades, the unprecedented increase in mobility has raised considerable concern about the relationship between mobility and vector-borne diseases and malaria in particular. Thus, one can claim that human mobility is one of the contributing factors to the resurgence of malaria. To assess human mobility on malaria burden among hosts, we formulate a movement-based model on a network of patches. We then extend human multi-group SEIAR deterministic epidemic models into a system of stochastic differential equations (SDEs). Our quantitative stochastic model which is expressed in terms of average rates of movement between compartments is fitted to time-series data (weekly malaria data of 2011 for each patch) using the maximum likelihood approach. Using the metapopulation (multi-group) model, we compute and analyze the basic reproduction number. The result shows that human movement is sufficient to preserve malaria disease firmness in the patches with the low transmission. With these results, we concluded that the sensitivity of malaria to the human mobility is turning to be greatly important over the implications of future malaria control in South Sudan.

Keywords: basic reproduction number, malaria, maximum likelihood, movement, stochastic model

Procedia PDF Downloads 118
19336 On the Dwindling Supply of the Observable Cosmic Microwave Background Radiation

Authors: Jia-Chao Wang

Abstract:

The cosmic microwave background radiation (CMB) freed during the recombination era can be considered as a photon source of small duration; a one-time event happened everywhere in the universe simultaneously. If space is divided into concentric shells centered at an observer’s location, one can imagine that the CMB photons originated from the nearby shells would reach and pass the observer first, and those in shells farther away would follow as time goes forward. In the Big Bang model, space expands rapidly in a time-dependent manner as described by the scale factor. This expansion results in an event horizon coincident with one of the shells, and its radius can be calculated using cosmological calculators available online. Using Planck 2015 results, its value during the recombination era at cosmological time t = 0.379 million years (My) is calculated to be Revent = 56.95 million light-years (Mly). The event horizon sets a boundary beyond which the freed CMB photons will never reach the observer. The photons within the event horizon also exhibit a peculiar behavior. Calculated results show that the CMB observed today was freed in a shell located at 41.8 Mly away (inside the boundary set by Revent) at t = 0.379 My. These photons traveled 13.8 billion years (Gy) to reach here. Similarly, the CMB reaching the observer at t = 1, 5, 10, 20, 40, 60, 80, 100 and 120 Gy are calculated to be originated at shells of R = 16.98, 29.96, 37.79, 46.47, 53.66, 55.91, 56.62, 56.85 and 56.92 Mly, respectively. The results show that as time goes by, the R value approaches Revent = 56.95 Mly but never exceeds it, consistent with the earlier statement that beyond Revent the freed CMB photons will never reach the observer. The difference Revert - R can be used as a measure of the remaining observable CMB photons. Its value becomes smaller and smaller as R approaching Revent, indicating a dwindling supply of the observable CMB radiation. In this paper, detailed dwindling effects near the event horizon are analyzed with the help of online cosmological calculators based on the lambda cold dark matter (ΛCDM) model. It is demonstrated in the literature that assuming the CMB to be a blackbody at recombination (about 3000 K), then it will remain so over time under cosmological redshift and homogeneous expansion of space, but with the temperature lowered (2.725 K now). The present result suggests that the observable CMB photon density, besides changing with space expansion, can also be affected by the dwindling supply associated with the event horizon. This raises the question of whether the blackbody of CMB at recombination can remain so over time. Being able to explain the blackbody nature of the observed CMB is an import part of the success of the Big Bang model. The present results cast some doubts on that and suggest that the model may have an additional challenge to deal with.

Keywords: blackbody of CMB, CMB radiation, dwindling supply of CMB, event horizon

Procedia PDF Downloads 103
19335 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 153
19334 Transforming Space to Place: Best-Practice Approaches and Initiatives

Authors: Juanee Cilliers

Abstract:

Urban citizens have come to expect more from their cities, demanding optimal conditions for business creativity and professional development, along with efficient, sustainable transportation and energy systems that feed robust economic development and healthy job markets. Urban public spaces are an important part of the urban environment, creating the framework for public life and quality thereof. The transformation of space into successful public places are crucial in this regard as planning must safeguard flexibility towards future changes, whilst simultaneously be capable of acting on short-term demands in order to address the complexity of public spaces within urban areas. This research evaluated two case studies of different cities in Belgium which successfully transformed spaces into lively public places. The transformation was illustrated and evaluated by means of visual analyses and space usage analyses of the original and redesigned space, along with the experience and value that the redesign brought to the area. Selected design elements were identified and evaluated based on the role in the transformation process, in an attempt to draw conclusions with regards to theory-practice relevance and to guide the transformation of space to place of (similar) public spaces.

Keywords: space, place, transformation, case studies

Procedia PDF Downloads 255
19333 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam

Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen

Abstract:

Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.

Keywords: infectious disease, dengue, geospatial data, climate

Procedia PDF Downloads 362
19332 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 114
19331 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 116
19330 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 415
19329 Spin Coherent States Without Squeezing

Authors: A. Dehghani, S. Shirin

Abstract:

We propose in this article a new configuration of quantum states, |α, β> := |α>×|β>. Which are composed of vector products of two different copies of spin coherent states, |α> and |β>. Some mathematical as well as physical properties of such states are discussed. For instance, it has been shown that the cross products of two coherent vectors remain coherent again. They admit a resolution of the identity through positive definite measures on the complex plane. They represent packets similar to the true coherent states, in other words we would not expect to take spin squeezing in any of the field quadratures Lˆx, Lˆy and Lˆz. Depending on the particular choice of parameters in the above scenarios, they can be converted into the so-called Dicke states which minimize the uncertainty relations of each pair of the angular momentum components.

Keywords: vector (Cross-)products, minimum uncertainty, angular momentum, measurement, Dicke states

Procedia PDF Downloads 389
19328 The Quality of Public Space in Mexico City: Current State and Trends

Authors: Mildred Moreno Villanueva

Abstract:

Public space is essential to strengthen the social and urban fabric and the social cohesion; there lies the importance of its study. Hence, the aim of this paper is to analyze the quality of public space in the XXI century in both quantitative and qualitative terms. In this article, the concept of public space includes open spaces such as parks, public squares and walking areas. To make this analysis we take Mexico City as the case study. It has a population of nearly 9 million inhabitants and it is composed of sixteen boroughs. For this analysis, we consider both, existing public spaces and the government intervention for building and improvement of new and existent public spaces. Results show that on the one hand, quantitatively there is not an equitable distribution of public spaces because of both, the growth of the city itself, as well as for the absence of political will to create public spaces. Another factor is the evolution of this city, which has been growing merely in a 'patched pattern', where public space has played no role at all with a total absence of urban design. On the other hand, qualitatively, even the boroughs with the most public spaces have not shown interest in making these spaces qualitatively inclusive and open to the general population aiming for integration. Therefore, urban projects that privatize public space seem to be the rule, rather than a rehabilitation effort of the existent public spaces. Hence, state intervention should reinforce its role as an agent of social change acting in the benefit of the majority of the inhabitants with the promotion of more inclusive public spaces.

Keywords: exclusion, inclusion, Mexico City, public space

Procedia PDF Downloads 596
19327 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 112
19326 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 340
19325 Urban Green Space Analysis Incorporated at Bodakdev, Ahmedabad City Based on the RS and GIS Techniques

Authors: Nartan Rajpriya

Abstract:

City is a multiplex ecological system made up of social, economic and natural sub systems. Green space system is the foundation of the natural system. It is also suitable part of natural productivity in the urban structure. It is dispensable for constructing a high quality human settlements and a high standard ecocity. Ahmedabad is the fastest growing city of India. Today urban green space is under strong pressure in Ahmedabad city. Due to increasing urbanization, combined with a spatial planning policy of densification, more people face the prospect of living in less green residential environments. In this research analyzes the importance of available Green Space at Bodakdev Park, Ahmedabad, using remote sensing and GIS technologies. High resolution IKONOS image and LISS IV data has been used in this project. This research answers the questions like: • Temporal changes in urban green space area. • Proximity to heavy traffic or roads or any recreational facilities. • Importance in terms of health. • Availability of quality infrastructure. • Available green space per area, per sq. km and per total population. This projects incorporates softwares like ArcGIS, Ecognition and ERDAS Imagine, GPS technologies etc. Methodology includes the field work and collection of other relevant data while preparation of land use maps using the IKONOS imagery which is corrected using GPS.

Keywords: urban green space, ecocity, IKONOS, LISS IV

Procedia PDF Downloads 373
19324 Electrodynamic Principles for Generation and Wireless Transfer of Energy

Authors: Steven D. P. Moore

Abstract:

An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy.

Keywords: electricity, sparkgap, wireless, electromagnetic

Procedia PDF Downloads 169
19323 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 355
19322 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization

Procedia PDF Downloads 338
19321 Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area

Authors: Michelle Eliane Hernández-García, Angélica Lozano

Abstract:

The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone.

Keywords: freight transport, industrial zone, traffic accidents, traffic mix, trucks

Procedia PDF Downloads 115
19320 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 422
19319 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 265
19318 A New Realization of Multidimensional System for Grid Sensor Network

Authors: Yang Xiong, Hua Cheng

Abstract:

In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.

Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems

Procedia PDF Downloads 631
19317 Adaptive Reuse of Lost Urban Space

Authors: Rana Sameeh

Abstract:

The city is the greatest symbol of human civilization and has been built for safety and comfort. However, uncontrolled urban growth caused some anonymous and unsightly images of the cities such as unused or abandoned spaces. When social interaction is missed in a public space it means the public space is lost since public spaces reflect the social life and interaction of people. Accordingly; this space became one of the most meaningless parts of the cities and has broken the continuity of the urban fabric. Lost urban spaces are the leftover unstructured landscape within the urban fabric. They are generally the unrecognized urban areas that are in need of redesign, since they have a great value that can add to their surrounding urban context. The research significance lies within the importance of urban open spaces, their value and their impact on the urban fabric. The research also addresses the reuse and reclamation of lost urban spaces in order to increase the percentage of green areas along the urban fabric, provide urban open spaces, develop a sustainable approach towards urban landscape and enhance the quality of the public open space and user experience. In addition, the reuse of lost space will give it the identity and function it lacks while also providing places for presence, spending time and observing. Creating continuity in a broken urban fabric represents an exploratory process in the relationship between infrastructure and the urban fabric and seeks to establish an architectural solution to leftover space within the city. In doing so, the research establishes a framework (criteria) for adaptive reuse of lost urban space throughout inductive and deductive methodology, analytical methodology; by analyzing some relevant examples and similar cases of lost spaces and finally through field methodology; by applying the achieved criteria on a case study in Alexandria and carrying on SWOT analysis and evaluation of the potentials of this case study.

Keywords: adaptive reuse, lost urban space, quality of public open space, urban fabric

Procedia PDF Downloads 619
19316 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound

Authors: Mustafa Kavraz

Abstract:

This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.

Keywords: sound absorber, room model, objective parameters of sound, jnd

Procedia PDF Downloads 358
19315 Media in Architecture-Intervention and Visual Experience in Religious Space

Authors: Jorge Duarte de Sá

Abstract:

The appearance of the new media technologies has opened new fields of intervention in architecture creating a new dynamic communication in the relationship between public and space, where are present technological devices that enable a new sensory experience, aesthetic and even spiritual. This connection makes relevant the idea of rehabilitate architectonic spaces with new media technologies such as sacred spaces. This research aims to create a media project integrated in sacred spaces that combine Architecture, Art and New Technologies, exploring new perspectives and different dynamics in space.

Keywords: media, architecture, religious spaces, projections, contemplation

Procedia PDF Downloads 328
19314 Optimal Utilization of Space in a Warehouse: A Case Study

Authors: Arun Kumar R. K. Gothra, Hasan Alhakamy

Abstract:

With increasing expectations and demands for warehousing and distribution, Warehouse Solution Incorporated in Victoria has been looking at ways to improve on its business processes to maintain the competitive edge. To maintain the provision of high quality service standards at competitive and affordable prices, improvements in the logistics management are necessary. One such avenue is to make efficient use of space available in the warehouse. This paper is based on a study of the collaboration of Warehouse Solution Inc with Dandenong Distribution Centre (DDC) to solve congestion problem and enhance efficiency of the whole warehouse activities.

Keywords: space optimization, optimal utilization, warehouse, DDC

Procedia PDF Downloads 577
19313 Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis

Authors: Manoj Malviya, Shubham Shinde

Abstract:

The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions.

Keywords: space frame chassis, torsional stiffness, multi-body analysis of chassis, element selection

Procedia PDF Downloads 335
19312 A Mathematical Analysis of a Model in Capillary Formation: The Roles of Endothelial, Pericyte and Macrophages in the Initiation of Angiogenesis

Authors: Serdal Pamuk, Irem Cay

Abstract:

Our model is based on the theory of reinforced random walks coupled with Michealis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived tumor angiogenesis factor (TAF) into proteolytic enzyme which in turn degrade the basal lamina. The model consists of two main parts. First part has seven differential equations (DE’s) in one space dimension over the capillary, whereas the second part has the same number of DE’s in two space dimensions in the extra cellular matrix (ECM). We connect these two parts via some boundary conditions to move the cells into the ECM in order to initiate capillary formation. But, when does this movement begin? To address this question we estimate the thresholds that activate the transport equations in the capillary. We do this by using steady-state analysis of TAF equation under some assumptions. Once these equations are activated endothelial, pericyte and macrophage cells begin to move into the ECM for the initiation of angiogenesis. We do believe that our results play an important role for the mechanisms of cell migration which are crucial for tumor angiogenesis. Furthermore, we estimate the long time tendency of these three cells, and find that they tend to the transition probability functions as time evolves. We provide our numerical solutions which are in good agreement with our theoretical results.

Keywords: angiogenesis, capillary formation, mathematical analysis, steady-state, transition probability function

Procedia PDF Downloads 137
19311 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma

Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze

Abstract:

The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.

Keywords: collisional, cold plasma, rectangular pulse signal, impulse envelope

Procedia PDF Downloads 362
19310 Time-Evolving Wave Packet in Phase Space

Authors: Mitsuyoshi Tomiya, Kentaro Kawamura, Shoichi Sakamoto

Abstract:

In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space.

Keywords: chaotic billiard, Poincaré section, scar, wave packet

Procedia PDF Downloads 434
19309 Spatial Planning of Community Green Infrastructure Based on Public Health Considerations: A Case Study of Kunhou Community

Authors: Shengdan Yang

Abstract:

The outbreak of the COVID-19 pandemic in early 2020 has made public health issues to be re-examined. The value of green space configuration is an important measure of community health quality. By combining quantitative and qualitative methods, the structure and function of community green space can be better evaluated. This study selects Wuhan Kunhou Community as the site and proposes to analyze the daily health service function of the community's green infrastructure. Through GIS-based spatial analysis, case study, and field investigation, this study evaluates the accessibility of green infrastructure and discusses the ideal green space form based on health indicators. The findings show that Kunhou Community lacks access to green infrastructure and public space for daily activities. The research findings provide a bridge between public health indicators and community space planning and propose design suggestions for green infrastructure planning.

Keywords: accessibility, community health, GIS, green infrastructure

Procedia PDF Downloads 87
19308 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach

Authors: Dominik Kowitzke

Abstract:

Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.

Keywords: empty nests, environment, Germany, households, over housing

Procedia PDF Downloads 153