Search results for: tree identification
3292 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems
Authors: Maciej Zaręba, Sławomir Lasota
Abstract:
Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems
Procedia PDF Downloads 923291 Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia
Authors: Abduselam Faris, Rijalu Negash, Zera Kedir
Abstract:
This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward.Keywords: value chain analysis, wood production, southwest Ethiopia, constraints and opportunities
Procedia PDF Downloads 933290 An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel
Authors: Ghasem Sharifi, Hamed Shahmohamadi Ousaloo, Milad Azimi, Mehran Mirshams
Abstract:
The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation.Keywords: experimental modeling, friction parameters, model identification, reaction wheel
Procedia PDF Downloads 2333289 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 1433288 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks
Authors: Tugba Bayoglu
Abstract:
Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification
Procedia PDF Downloads 2793287 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card
Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi
Abstract:
In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.Keywords: blockchain, decentralized system, fingerprint impression, identity management, iris scan
Procedia PDF Downloads 1283286 An Improved Parallel Algorithm of Decision Tree
Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng
Abstract:
Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.Keywords: classification, Gini index, parallel data mining, pruning ahead
Procedia PDF Downloads 1233285 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal
Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik
Abstract:
Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system
Procedia PDF Downloads 2363284 Ecological Investigations for the Control of Aedes aegypti (Diptera: Culicidae) in the Selected Study Districts of Punjab, Pakistan
Authors: Muhammad Sohail Sajid, Muhammad Abdullah Malik, Muhammad Saqib, Faiz Ahmad Raza, Waseem Akram
Abstract:
Aedes (Ae.) aegypti, the vector of pathogens of one health significance, has gained currency over the last decade. The present study reports the prevalence of A. aegypti larvae in indoor and outdoor niches from the three districts of different agro-geo-climatic zones of Punjab, including Chakwal (north), Faisalabad (central), and Dera Ghazi Khan (south). Mosquito larvae were collected, preserved, and transferred for identification. The relevant data were collected on a predesigned questionnaire. Stegomyia indices, including House Index (HI), Breteau Index (BI), and Container Index (CI), were calculated. The association of different breeding containers with the prevalence of Ae. aegypti larvae were estimated through Chi-square analysis. The highest Stegomyia indices were calculated in Chakwal (HI = 46.61%, BI = 91.67%, and CI = 15.28%) as compared to Faisalabad (HI = 34.11%, BI = 68.75% and, CI = 13.04%) and DG Khan (HI = 28.39%, BI = 68.23% and, CI = 11.29%), respectively. Irrespective of the geographical area, earthen jars, water tanks, and tree holes were found to be significantly associated (p < 0.05) with the abundance of Ae. aegypti larvae. However, tires and plastic bottles in Faisalabad and DG Khan while flower tubs and plastic buckets in Faisalabad and Chakwal were found to be significantly associated (p < 0.05) with the larval abundance. The results are a maiden attempt to correlate the magnitude of Ae. aegypti larvae in various microclimatic niches of Punjab, Pakistan, which might help in policy-making for preventive management of the menace.Keywords: Aedes aegypti, ecology, breeding habitats, Stegomyia indices, breeding containers
Procedia PDF Downloads 1203283 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance
Procedia PDF Downloads 2653282 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species
Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek Kurtböke, Ronald J. Quinn
Abstract:
A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogs isolated from a termite gut-associated Streptomyces species.Keywords: actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy
Procedia PDF Downloads 613281 Response of Six Organic Soil Media on the Germination, Seedling Vigor Performance of Jack Fruit Seeds in Chitwan Nepal
Authors: Birendra Kumar Bhattachan
Abstract:
Organic soil media plays an important role for seed germination, growing, and producing organic jack fruits as the source of food such as vitamin A, C, and others for human health. An experiment was conducted to find out the appropriate organic soil medias to induce germination and seedling vigor of jack fruit seeds at the farm of Agriculture and Forestry University (AFU) Chitwan Nepal during June 2022 to October 2022. The organic soil medias used as treatments were as 1. soil collected under the Molingia tree; 2. soil, FYM and RH (2:1;1); 3. soil, FYM (1:1); 4. sand, FYM and RH (2:1:1), 5, sand, soil, FYM and RH (1:1:1:1) and 6. sand, soil and RH (1:2:1) under Completely Randomized Design (CRD) with four replications. Significantly highest germination of 88% was induced by soil media, followed by media of soil and FYM (!:1) i.e. 63% and the media of soil, FYM and RH (2:1;1) and the least media was sand, soil, FYM and RH (1:1:1:) to induce germination of 28%. Significantly highest seedling length of 73 cm was produced by soil media followed by the media soil, sand, and RH (1:2:1), i.e. 72 cm and the media soil, sand, FYM, and RH (1:1:1:1) and the least media was soil, FYM and RH (2:1:1) to produce 62 cm seedling length, Similarly, significantly highest seedling vigor of 6257 was produced by soil media followed by the media soil and FYM (1:1) i.e. 4253 and the least was the media sand, soil, FYM and RH (1:1:1:1) to produce seedling vigor of1916. Based on this experiment, it was concluded that soil media collected under the Moringia tree could induce the highest germinating capacity of jack fruit seeds and then seedling vigor.Keywords: jack fruit seed, soil media, farm yard manure, sand media, rice husk
Procedia PDF Downloads 1993280 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters
Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel
Abstract:
Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.Keywords: craniofacial, gender, odontometric, stature
Procedia PDF Downloads 1913279 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 4103278 Quick Response(QR) Code for Vehicle Registration and Identification
Authors: S. Malarvizhi, S. Sadiq Basha, M. Santhosh Kumar, K. Saravanan, R. Sasikumar, R. Satheesh
Abstract:
This is a web based application which provides authorization for the vehicle identification and registration. It also provides mutual authentication between the police and users in order to avoid misusage. The QR code generation in this application overcomes the difficulty in the manual registration of the vehicle documents. This generated QR code is placed in the number plates of the vehicles. The QR code is scanned using the QR Reader installed in the smart devices. The police officials can check the vehicle details and file cases on accidents, theft and traffic rules violations using QR code. In addition to vehicle insurance payments and renewals, the renewal alert is sent to the vehicle owner about payment deadline. The non-permitted vehicles can be blocked in the next check-post by sending the alert messages.Keywords: QR code, QR reader, registration, authentication, idenfication
Procedia PDF Downloads 4943277 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles
Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh
Abstract:
Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.Keywords: low temperature luminescence spectroscopy, material identification, strontium aluminates phosphor, emission properties
Procedia PDF Downloads 4483276 Advanced Combinatorial Method for Solving Complex Fault Trees
Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle
Abstract:
Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures
Procedia PDF Downloads 453275 The Influence of Group Heuristics on Corporate Social Responsibility Messages Designed to Reduce Illegal Consumption
Authors: Kate Whitman, Zahra Murad, Joe Cox
Abstract:
Corporate social responsibility projects are suggested to motivate consumers to reciprocate good corporate deeds with their custom. When the projects benefit the ingroup vs the outgroup, such as locals rather than foreigners, the effect on reciprocity is suggested to be more powerful. This may be explained by group heuristics, a theory which indicates that favours to the ingroup (but not outgroup) are expected to be reciprocated, resulting in ingroup favouritism. The heuristic is theorised to explain prosocial behaviours towards the ingroup. The aim of this study is to test whether group heuristics similarly explain a reduction in antisocial behaviours towards the ingroup, measured by illegal consumption which harms a group that consumers identify with. In order to test corporate social responsibility messages, a population of interested consumers is required, so sport fans are recruited. A pre-registered experiment (N = 600) tests the influence of a focused “team” benefiting message vs a broader “sport” benefiting message on change in illegal intentions. The influence of group (team) identity and trait reciprocity on message efficacy are tested as measures of group heuristics. Results suggest that the “team” treatment significantly reduces illegal consumption intentions. The “sport” treatment interacted with the team identification measure, increasing illegal consumption intentions for low team identification individuals. The results suggest that corporate social responsibility may be effective in reducing illegal consumption, if the messages are delivered directly from brands to consumers with brand identification. Messages delivered on the behalf of an industry may have an undesirable effect.Keywords: live sports, piracy, counterfeiting, corporate social responsibility, group heuristics, ingroup bias, team identification
Procedia PDF Downloads 843274 Assessment of Lactic Acid Bacteria of Probiotic Potentials in Dairy Produce in Saudi Arabia
Authors: Rashad R. Al-Hindi
Abstract:
The aim of this study was to isolate and identify lactic acid bacteria and evaluate their therapeutic and food preservation importance. Ninety-three suspected lactic acid bacteria (LAB) were isolated from thirteen different raw and fermented milk of indigenous sources in the Kingdom of Saudi Arabia. The identification of forty-six selected LAB strains and genetic relatedness were performed based on 16S rDNA gene sequence comparison. The LAB counts in certain samples were higher under microaerobic than anaerobic conditions. The identified LAB belonged to genera Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains). Phylogenetic tree generated from the full-length (~1.6 kb) sequences confirmed previous findings. Utilization of shorter 16S rDNA sequences (~1.0 kb) also discriminated among strains of which V2 region was the most effective. None of the strains exhibited resistance to clinically relevant antibiotics or undesirable hemolytic activity, while they differed in other probiotic characteristics, e.g., tolerance to acidic pH, resistance to bile salt, and antibacterial activity. In conclusion, the isolates Lactobacillus casei MSJ1, Lactobacillus casei Dwan5, Lactobacillus plantarum EyLan2 and Enterococcus faecium Gail-BawZir8 are likely the best probiotic LAB and we speculate that studying the synergistic effects of bacterial combinations might result in the occurrence of more effective probiotic potential. We argue that the raw and fermented milk of animals hosted in Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, are rich in LAB with promising probiotics potential.Keywords: fermented foods, lactic acid bacteria, probiotics, Saudi Arabia
Procedia PDF Downloads 1983273 Survey and Identification of Coinfecting Botryosphaeriales Causing Stem Canker Diseases of Eucalyptus camaldulensis in Ethiopia
Authors: Wendu Admasu, Assefa Sintayehu, Alemu Gezahgne, Zewdu Terefework
Abstract:
Eucalyptus is the most widely planted forest tree species in the world. In Ethiopia, pathogenic fungi pose an increasing threat to Eucalyptus species. Due to limited research, there is insufficient information on the associated diseases and pathogens. This study investigated Eucalyptus diseases, the extent of their damage, and the causal fungal pathogens. A Eucalyptus disease survey was conducted in the Eucalyptus forestry areas of Ethiopia during the growth years 2019/20 and 2020/21. Disease assessment and sampling were carried out in eighteen plantations at nine locations. E. camaldulensis was the most dominant species planted in the surveyed areas. The field study shows a high incidence and severity of canker diseases. Diseased stem and branch samples were collected, cultured on malt extract agar media and studied. The results of morphological and ITS sequence analysis confirmed that the fungal species Neofusicoccum parvum, Lasiodiplodia theobromae, and Aplosporella hesperidica caused the observed canker symptoms. This is the first report of Lasiodiplodia theobromae and Aplosporella hesperidica causing diseases in Eucalyptus plants in Ethiopia. Changes in global climate and environmental factors, such as altitude, are believed to have a strong impact on the susceptibility of Eucalyptus plants to diseases. Strict quarantine practices and continuous monitoring of pathogenic and endophytic fungal species associated with Eucalyptus trees are issued to be prioritized to effectively control and manage the disease.Keywords: Neofusicoccum, Lasiodiplodia, Aplosporella, pathogenicity, phylogeny, severity
Procedia PDF Downloads 683272 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 3293271 The Role of Identifications in Women Psychopathology
Authors: Mary Gouva, Elena Dragioti, Evangelia Kotrsotsiou
Abstract:
Family identification has the potential to play a very decisive role in psychopathology. In this study we aimed to investigate the impact of family identifications on female psychopathology. A community sample of 101 women (mean age 20.81 years, SD = 0.91 ranged 20-25) participated to the present study. The girls completed a) the Symptom Check-List Revised (SCL-90) and b) questionnaire concerning socio-demographic information and questions for family identifications. The majority of women reported that they matched to the father in terms of identifications (47.1%). Age and birth order were not contributed on family identifications (F(5) =2.188, p=.062 and F(3)=1.244, p=.299 respectively). Multivariate analysis by using MANCOVA found statistical significant associations between family identifications and domains of psychopathology as provided by SCL-90 (P<05). Our results highlight the role of identifications especially on father and female psychopathology as well as replicate the Freudian perception about the female Oedipus complex.Keywords: family identification, psychoanalysis, psychopathology, women
Procedia PDF Downloads 3233270 Correlation Matrix for Automatic Identification of Meal-Taking Activity
Authors: Ghazi Bouaziz, Abderrahim Derouiche, Damien Brulin, Hélène Pigot, Eric Campo
Abstract:
Automatic ADL classification is a crucial part of ambient assisted living technologies. It allows to monitor the daily life of the elderly and to detect any changes in their behavior that could be related to health problem. But detection of ADLs is a challenge, especially because each person has his/her own rhythm for performing them. Therefore, we used a correlation matrix to extract custom rules that enable to detect ADLs, including eating activity. Data collected from 3 different individuals between 35 and 105 days allows the extraction of personalized eating patterns. The comparison of the results of the process of eating activity extracted from the correlation matrices with the declarative data collected during the survey shows an accuracy of 90%.Keywords: elderly monitoring, ADL identification, matrix correlation, meal-taking activity
Procedia PDF Downloads 933269 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 533268 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement
Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova
Abstract:
One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank
Procedia PDF Downloads 3873267 Use of Nutritional Screening Tools in Cancer-Associated Malnutrition
Authors: Meryem Saban Guler, Saniye Bilici
Abstract:
Malnutrition is a problem that significantly affects patients with cancer throughout the course of their illness, and it may be present from the moment of diagnosis until the end of treatment. We searched electronic databases using key terms such as ‘malnutrition in cancer patients’ or ‘nutritional status in cancer’ or ‘nutritional screening tools’ etc. Decline in nutritional status and continuing weight loss are associated with an increase in number and severity of complications, impaired quality of life and decreased survival rate. Nutrition is an important factor in the treatment and progression of cancer. Cancer patients are particularly susceptible to nutritional depletion due to the combined effects of the malignant disease and its treatment. With increasing incidence of cancer, identification and management of nutritional deficiencies are needed. Early identification of malnutrition, is substantial to minimize or prevent undesirable outcomes throughout clinical course. In determining the nutritional status; food consumption status, anthropometric methods, laboratory tests, clinical symptoms, psychosocial data are used. First-line strategies must include routine screening and identification of inpatients or outpatients at nutritional risk with the use of a simple and standardized screening tool. There is agreement among international nutrition organizations and accredited health care organizations that routine nutritional screening should be a standard procedure for every patient admitted to a hospital. There are f management of all cancer patients therefore routine nutritional screening with validated tools can identify cancer patients at risk.Keywords: cancer, malnutrition, nutrition, nutritional screening
Procedia PDF Downloads 2053266 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification
Procedia PDF Downloads 2473265 Group Boundaries against and Due to Identity Threat
Authors: Anna Siegler, Sara Bigazzi, Sara Serdult, Ildiko Bokretas
Abstract:
Social identity emerging from group membership defines the representational processes of our social reality. Based on our theoretical assumption the subjective perception of identity threat leads to an instable identity structure. The need to re-establish the positive identity will lead us to strengthen group boundaries. Prejudice in our perspective offer psychological security those who thinking in exclusive barriers, and we suggest that those who identify highly with their ingroup/national identity and less with superordinate identities take distance from others and this is related to their perception of threat. In our study we used a newly developed questionnaire, the Multiple Threat and Prejudice Questionnaire (MTPQ) which measure identity threat at different dimensions of identification (national, existential, gender, religious) and the distancing of different outgroups, over and above we worked with Social Dominance Orientation (SDO) and Identification with All Humanity Scale (IWAH). We conduct one data collection (N=1482) in a Hungarian sample to examine the connection between national threat and distance-taking, and this survey includes the investigation (N=218) of identification with different group categories. Our findings confirmed that those who feel themselves threatened in their national identity aspects are less likely to identify themselves with superordinate groups and this correlation is much stronger when they think about the nation as a bio-cultural unit, while if nation defined as a social-economy entity this connection is less powerful and has just the opposite direction.Keywords: group boundaries, identity threat, prejudice, superordinate groups
Procedia PDF Downloads 4103264 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 1613263 A Review of Ultralightweight Mutual Authentication Protocols
Authors: Umar Mujahid, Greatzel Unabia, Hongsik Choi, Binh Tran
Abstract:
Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.Keywords: RFID, Ultralightweight, UMAP, SASI
Procedia PDF Downloads 153