Search results for: time-frequency feature extraction
2775 Stream Extraction from 1m-DTM Using ArcGIS
Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo
Abstract:
Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.Keywords: digital terrain models, hydrology tools, strahler method, stream classification
Procedia PDF Downloads 2742774 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling
Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes
Abstract:
Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling
Procedia PDF Downloads 882773 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon
Authors: Woei-Shyan Lee, Shuo-Ling Chang
Abstract:
The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.Keywords: nanoindentation, silicon, phase transformation, amorphous, annealing
Procedia PDF Downloads 3762772 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 942771 Study of Chemical Compounds of Garlic
Authors: A. B. Bazaralieva, A. A. Turgumbayeva
Abstract:
The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.Keywords: Allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method
Procedia PDF Downloads 1122770 Waters Colloidal Phase Extraction and Preconcentration: Method Comparison
Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes
Abstract:
Colloids are ubiquitous in the environment and are known to play a major role in enhancing the transport of trace elements, thus being an important vector for contaminants dispersion. Colloids study and characterization are necessary to improve our understanding of the fate of pollutants in the environment. However, in stream water and groundwater, colloids are often very poorly concentrated. It is therefore necessary to pre-concentrate colloids in order to get enough material for analysis, while preserving their initial structure. Many techniques are used to extract and/or pre-concentrate the colloidal phase from bulk aqueous phase, but yet there is neither reference method nor estimation of the impact of these different techniques on the colloids structure, as well as the bias introduced by the separation method. In the present work, we have tested and compared several methods of colloidal phase extraction/pre-concentration, and their impact on colloids properties, particularly their size distribution and their elementary composition. Ultrafiltration methods (frontal, tangential and centrifugal) have been considered since they are widely used for the extraction of colloids in natural waters. To compare these methods, a ‘synthetic groundwater’ was used as a reference. The size distribution (obtained by Field-Flow Fractionation (FFF)) and the chemical composition of the colloidal phase (obtained by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Total Organic Carbon analysis (TOC)) were chosen as comparison factors. In this way, it is possible to estimate the pre-concentration impact on the colloidal phase preservation. It appears that some of these methods preserve in a more efficient manner the colloidal phase composition while others are easier/faster to use. The choice of the extraction/pre-concentration method is therefore a compromise between efficiency (including speed and ease of use) and impact on the structural and chemical composition of the colloidal phase. In perspective, the use of these methods should enhance the consideration of colloidal phase in the transport of pollutants in environmental assessment studies and forensics.Keywords: chemical composition, colloids, extraction, preconcentration methods, size distribution
Procedia PDF Downloads 2172769 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 1432768 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1442767 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1542766 Pyramid Binary Pattern for Age Invariant Face Verification
Authors: Saroj Bijarnia, Preety Singh
Abstract:
We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.Keywords: biometrics, age invariant, verification, support vector machine
Procedia PDF Downloads 3542765 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions
Authors: Toshanlal Meenpal, Ankita Meenpal
Abstract:
A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.Keywords: information hiding, wedge direction, difference expansion, integer transform
Procedia PDF Downloads 4842764 Precious and Rare Metals in Overburden Carbonaceous Rocks: Methods of Extraction
Authors: Tatyana Alexandrova, Alexandr Alexandrov, Nadezhda Nikolaeva
Abstract:
A problem of complex mineral resources development is urgent and priority, it is aimed at realization of the processes of their ecologically safe development, one of its components is revealing the influence of the forms of element compounds in raw materials and in the processing products. In view of depletion of the precious metal reserves at the traditional deposits in the XXI century the large-size open cast deposits, localized in black shale strata begin to play the leading role. Carbonaceous (black) shales carry a heightened metallogenic potential. Black shales with high content of carbon are widely distributed within the scope of Bureinsky massif. According to academician Hanchuk`s data black shales of Sutirskaya series contain generally PGEs native form. The presence of high absorptive towards carbonaceous matter gold and PGEs compounds in crude ore results in decrease of valuable components extraction because of their sorption into dissipated carbonaceous matter.Keywords: сarbonaceous rocks, bitumens, precious metals, concentration, extraction
Procedia PDF Downloads 2462763 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore
Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale
Abstract:
Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction
Procedia PDF Downloads 3952762 Assisted Video Colorization Using Texture Descriptors
Authors: Andre Peres Ramos, Franklin Cesar Flores
Abstract:
Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference.Keywords: colorization, feature matching, texture descriptors, video segmentation
Procedia PDF Downloads 1622761 Extraction of Cellulose Nanocrystals from Soy Pods
Authors: Maycon dos Santos, Marivane Turim Koschevic, Karina Sayuri Ueda, Marcello Lima Bertuci, Farayde Matta Fackhouri, Silvia Maria Martelli
Abstract:
The use of cellulose nanocrystals as reinforcing agents in polymer nanocomposites is promising. In this study, we tested four different methods of mercerization were divided into two stages. The sample was treated in 5% NaOH solution for 30 minutes at 50 ° C in the first stage and 30vol H2O2 for 2 hours at 50 ° C in the second step, which showed better results. For the extraction of the sample obtained nanocrystals positive result was that the solution was treated with H2SO4 60% (w / w) for 1 hour at 50 ° C. The results were positive and showed that it is possible to extract CNC at low temperatures.Keywords: soy pods, cellulose nanocrystals, temperature, acid concentration
Procedia PDF Downloads 2972760 Research on the Detection Method of Helmet Wearing in Construction Site Based on Deep Learning
Authors: Afaq Ahmad, Yifei Wang, Muhammad Kashif
Abstract:
This paper addresses the rising safety accidents in China's construction industry by focusing on detecting safety helmet usage among workers using deep learning techniques. It enhances existing datasets through the collection of construction site images and merges them with public datasets to create a diverse sample library. An improved Cascade R-CNN algorithm is developed, incorporating a Swin Transformer for better feature extraction, ROI Align for detecting small and occluded targets, and Gaussian weighted Soft-NMS to reduce redundant detections. The model, trained on the "My-SHWD" dataset, achieved a mean Average Precision of 92.66%, showcasing strong performance. Additionally, a helmet detection system was designed for testing images, videos, and live feeds, demonstrating reliability and stability in practical applications.Keywords: deep learning, safety helmet-wearing detection, cascade R-CNN, swin transformer
Procedia PDF Downloads 52759 Characteristic Sentence Stems in Academic English Texts: Definition, Identification, and Extraction
Authors: Jingjie Li, Wenjie Hu
Abstract:
Phraseological units in academic English texts have been a central focus in recent corpus linguistic research. A wide variety of phraseological units have been explored, including collocations, chunks, lexical bundles, patterns, semantic sequences, etc. This paper describes a special category of clause-level phraseological units, namely, Characteristic Sentence Stems (CSSs), with a view to describing their defining criteria and extraction method. CSSs are contiguous lexico-grammatical sequences which contain a subject-predicate structure and which are frame expressions characteristic of academic writing. The extraction of CSSs consists of six steps: Part-of-speech tagging, n-gram segmentation, structure identification, significance of occurrence calculation, text range calculation, and overlapping sequence reduction. Significance of occurrence calculation is the crux of this study. It includes the computing of both the internal association and the boundary independence of a CSS and tests the occurring significance of the CSS from both inside and outside perspectives. A new normalization algorithm is also introduced into the calculation of LocalMaxs for reducing overlapping sequences. It is argued that many sentence stems are so recurrent in academic texts that the most typical of them have become the habitual ways of making meaning in academic writing. Therefore, studies of CSSs could have potential implications and reference value for academic discourse analysis, English for Academic Purposes (EAP) teaching and writing.Keywords: characteristic sentence stem, extraction method, phraseological unit, the statistical measure
Procedia PDF Downloads 1692758 Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments
Authors: F. Portet-Koltalo, Y. Tian, I. Berger, C. Boulanger-Lecomte, A. Benamar, N. Machour
Abstract:
Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze.Keywords: contaminated fine-grained sediments, matrix solid phase dispersive extraction, microwave assisted extraction, molecularly imprinted polymers, multi-pollutant analysis
Procedia PDF Downloads 3552757 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis
Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh
Abstract:
Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.Keywords: cottonseed, glucantime, gossypol, leishmaniasis
Procedia PDF Downloads 622756 Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)
Authors: Marisol Rodriguez-Duarte, Aide Saenz-Galindo, Carolina Flores-Gallegos, Raul Rodriguez-Herrera, Juan Ascacio-Valdes
Abstract:
The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest.Keywords: U/M-AE, tarbush, polyphenols, identification
Procedia PDF Downloads 1652755 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5442754 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 5002753 Vernacular Façade for Energy Conservation: Mashrabiya, A Reminiscent of Arab-Islamic Architecture
Authors: Balpreet Singh Madan
Abstract:
The Middle Eastern countries have preserved their heritage, tradition, and culture in their buildings by incorporating vernacular features of Arab-Islamic Architecture. The harsh sun and arid climate in the Gulf region make their buildings and infrastructure extremely hot and challenging to live in. One such iconic feature of Arab architecture is the Mashrabiya, which has been refined and updated for both functional and aesthetic purposes. This feature helps reduce the impact of solar radiation in buildings and lowers the energy requirements for creating livable conditions. The incorporation of Mashrabiya in modern buildings in the region symbolizes the amalgamation of tradition with innovation and modern technology. These buildings depict Mashrabiya with refinements for its better functional performance and aesthetic appeal to make superior built forms. This paper emphasizes the study of Mashrabiya as a vernacular feature with its adaptability for Energy Conservation and Sustainability, as seen in some of the recent iconic buildings of the Middle East, through a literature review and case studies of renowned buildings.Keywords: energy efficiency, climate responsive, sustainability, innovation, heritage, vernacular
Procedia PDF Downloads 1032752 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1332751 Low-Cost Embedded Biometric System Based on Fingervein Modality
Authors: Randa Boukhris, Alima Damak, Dorra Sellami
Abstract:
Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat
Procedia PDF Downloads 2052750 Bag of Local Features for Person Re-Identification on Large-Scale Datasets
Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou
Abstract:
In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking
Procedia PDF Downloads 1972749 Key Frame Based Video Summarization via Dependency Optimization
Authors: Janya Sainui
Abstract:
As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.Keywords: video summarization, key frame extraction, dependency measure, quadratic mutual information
Procedia PDF Downloads 2672748 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 912747 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: color moments, visual thing recognition system, SIFT, color SIFT
Procedia PDF Downloads 4712746 Density Determination by Dilution for Extra Heavy Oil Residues Obtained Using Molecular Distillation and Supercritical Fluid Extraction as Upgrading and Refining Process
Authors: Oscar Corredor, Alexander Guzman, Adan Leon
Abstract:
Density is a bulk physical property that indicates the quality of a petroleum fraction. It is also a useful property to estimate various physicochemical properties of fraction and petroleum fluids; however, the determination of density of extra heavy residual (EHR) fractions by standard methodologies, (ASTM D70) shows limitations for samples with higher densities than 1.0879 g/cm3. For this reason, a dilution methodology was developed in order to determinate density for those particular fractions, 87 (EHR) fractions were obtained as products of the fractionation of Colombian typical Vacuum Distillation Residual Fractions using molecular distillation (MD) and extraction with Solvent N-hexane in Supercritical Conditions (SFEF) pilot plants. The proposed methodology showed reliable results that can be demonstrated with the standard deviation of repeatability and reproducibility values of 0.0031 and 0.0061 g/ml respectively. In the same way, it was possible to determine densities in fractions EHR up to 1.1647g/cm3 and °API values obtained were ten times less than the water reference value.Keywords: API, density, vacuum residual, molecular distillation, supercritical fluid extraction
Procedia PDF Downloads 268