Search results for: the Bouc-Wen hysteresis model
16411 Improving the Quantification Model of Internal Control Impact on Banking Risks
Authors: M. Ndaw, G. Mendy, S. Ouya
Abstract:
Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.Keywords: risk, control, banking, FMECA, criticality
Procedia PDF Downloads 33016410 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile
Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno
Abstract:
In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control
Procedia PDF Downloads 58516409 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose
Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani
Abstract:
Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.Keywords: Gliclazide, hypromellose, drug release, modified-release tablet, mathematical model
Procedia PDF Downloads 22016408 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 38216407 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.Keywords: carbon fiber reinforced thermoplastic, finite element analysis, pre-impregnated textile composite, non-isothermal forming
Procedia PDF Downloads 42816406 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.Keywords: Besag2, CAR models, disease mapping, INLA, spatial models
Procedia PDF Downloads 27716405 Elemental and Magnetic Properties of Bed Sediment of Siang River, a Major River of Brahmaputra Basin
Authors: Abhishek Dixit, Sandip S. Sathe, Chandan Mahanta
Abstract:
The Siang river originates in Angsi glacier in southern Tibet (there known as the Yarlung Tsangpo). After traveling through Indus-Tsangpo suture zone and deep gorges near Namcha Barwa peak, it takes a south-ward turn and enters India, where it is known as Siang river and becomes a major tributary of the Brahmaputra in Assam plains. In this study, we have analyzed the bed sediment of the Siang river at two locations (one at extreme upstream near the India-China border and one downstream before Siang Brahmaputra confluence). We have also sampled bed sediment at the remote location of Yammeng river, an eastern tributary of Siang. The magnetic hysteresis properties show the combination of paramagnetic and weak ferromagnetic behavior with a multidomain state. Moreover, curie temperature analysis shows titanomagnetite solid solution series, which is causing the weak ferromagnetic signature. Given that the magnetic mineral was in a multidomain state, the presence of Ti, Fe carrying heave mineral, may be inferred. The Chemical index of alteration shows less weathered sediment. However, the Yammeng river sample being close to source shows fresh grains subjected to physical weathering and least chemically alteration. Enriched Ca and K and depleted Na and Mg with respect to upper continental crust concentration also points toward the less intense chemical weathering along with the dominance of calcite weathering.Keywords: bed sediment, magnetic properties, Siang, weathering
Procedia PDF Downloads 11916404 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff
Abstract:
Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient
Procedia PDF Downloads 38916403 Using an Epidemiological Model to Study the Spread of Misinformation during the Black Lives Matter Movement
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
The proliferation of social media platforms like Twitter has heightened the consequences of the spread of misinformation. To understand and model the spread of misinformation, in this paper, we leveraged the SEIZ (Susceptible, Exposed, Infected, Skeptics) epidemiological model to describe the underlying process that delineates the spread of misinformation on Twitter. Compared to the other epidemiological models, this model produces broader results because it includes the additional Skeptics (Z) compartment, wherein a user may be Exposed to an item of misinformation but not engage in any reaction to it, and the additional Exposed (E) compartment, wherein the user may need some time before deciding to spread a misinformation item. We analyzed misinformation regarding the unrest in Washington, D.C. in the month of March 2020, which was propagated by the use of the #DCblackout hashtag by different users across the U.S. on Twitter. Our analysis shows that misinformation can be modeled using the concept of epidemiology. To the best of our knowledge, this research is the first to attempt to apply the SEIZ epidemiological model to the spread of a specific item of misinformation, which is a category distinct from that of rumor and hoax on online social media platforms. Applying a mathematical model can help to understand the trends and dynamics of the spread of misinformation on Twitter and ultimately help to develop techniques to quickly identify and control it.Keywords: Black Lives Matter, epidemiological model, mathematical modeling, misinformation, SEIZ model, Twitter
Procedia PDF Downloads 16416402 Application and Verification of Regression Model to Landslide Susceptibility Mapping
Authors: Masood Beheshtirad
Abstract:
Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.Keywords: landslide, mapping, multiple model, regression
Procedia PDF Downloads 32216401 A Multi-Scale Contact Temperature Model for Dry Sliding Rough Surfaces
Authors: Jamal Choudhry, Roland Larsson, Andreas Almqvist
Abstract:
A multi-scale flash temperature model has been developed and validated against existing work. The core strength of the proposed model is that it can be adapted to predict flash contact temperatures occurring in various types of sliding systems. In this paper, it is used to investigate how different surface roughness parameters affect the flash temperatures. The results show that for decreasing Hurst exponents as well as increasing values of the high-frequency cut-off, the maximum flash temperature increases. It was also shown that the effect of surface roughness does not influence the average interface temperature. The model predictions were validated against data from an experiment conducted in a pin-on-disc machine. This also showed the importance of including a wear model when simulating flash temperature development in a sliding system.Keywords: multiscale, pin-on-disc, finite element method, flash temperature, surface roughness
Procedia PDF Downloads 11516400 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 30816399 Numerical Analysis of Swirling Chamber Using Improved Delayed Detached Eddy Simulation Turbulence Model
Authors: Hamad M. Alhajeri
Abstract:
Swirling chamber is a promising cooling method for heavily thermally loaded parts like turbine blades due to the additional circumferential velocity and therefore improved turbulent mixing of the fluid. This paper investigates numerically the effect of turbulence model on the heat convection of the swirling chamber. Grid independence analysis is conducted to obtain the proper grid dimension. The work validated with experimental data available in the literature. Flow analysis using improved delayed detached eddy simulation turbulence model and Reynolds averaged Navier-Stokes k-ɛ turbulence model is carried. The flow characteristic near the exit is reformed when improved delayed detached eddy simulation model used.Keywords: gas turbine, Nusselt number, flow characteristics, heat transfer
Procedia PDF Downloads 20016398 Numerical Simulation of Wishart Diffusion Processes
Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu
Abstract:
This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility modelKeywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes
Procedia PDF Downloads 37616397 Input-Output Analysis in Laptop Computer Manufacturing
Authors: H. Z. Ulukan, E. Demircioğlu, M. Erol Genevois
Abstract:
The scope of this paper and the aim of proposed model were to apply monetary Input –Output (I-O) analysis to point out the importance of reusing know-how and other requirements in order to reduce the production costs in a manufacturing process for a laptop computer. I-O approach using the monetary input-output model is employed to demonstrate the impacts of different factors in a manufacturing process. A sensitivity analysis showing the correlation between these different factors is also presented. It is expected that the recommended model would have an advantageous effect in the cost minimization process.Keywords: input-output analysis, monetary input-output model, manufacturing process, laptop computer
Procedia PDF Downloads 38816396 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.Keywords: voltage source inverter, space vector pulse width modulation, model predictive control, comparison
Procedia PDF Downloads 50616395 ARIMA-GARCH, A Statistical Modeling for Epileptic Seizure Prediction
Authors: Salman Mohamadi, Seyed Mohammad Ali Tayaranian Hosseini, Hamidreza Amindavar
Abstract:
In this paper, we provide a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autore- gressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction, but the ARCH or GARCH model acting on the residuals of ARIMA attains a con- siderable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are surveyed to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes.Keywords: epileptic seizure prediction , ARIMA, ARCH and GARCH modeling, heteroskedasticity, EEG
Procedia PDF Downloads 40316394 Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature
Authors: Jun Tian, Yu Yang, Liping Zhang, Qianhua Kan
Abstract:
Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature.Keywords: constitutive model, elevated temperature, ratcheting, SA 508-3
Procedia PDF Downloads 30016393 Exploring the Energy Model of Cumulative Grief
Authors: Masica Jordan Alston, Angela N. Bullock, Angela S. Henderson, Stephanie Strianse, Sade Dunn, Joseph Hackett, Alaysia Black Hackett, Marcus Mason
Abstract:
The Energy Model of Cumulative Grief was created in 2018. The Energy Model of Cumulative Grief utilizes historic models of grief stage theories. The innovative model is additionally unique due to its focus on cultural responsiveness. The Energy Model of Cumulative Grief helps to train practitioners who work with clients dealing with grief and loss. This paper assists in introducing the world to this innovative model and exploring how this model positively impacted a convenience sample of 140 practitioners and individuals experiencing grief and loss. Respondents participated in Webinars provided by the National Grief and Loss Center of America (NGLCA). Participants in this cross-sectional research design study completed one of three Grief and Loss Surveys created by the Grief and Loss Centers of America. Data analysis for this study was conducted via SPSS and Survey Hero to examine survey results for respondents. Results indicate that the Energy Model of Cumulative Grief was an effective resource for participants in addressing grief and loss. The majority of participants found the Webinars to be helpful and a conduit to providing them with higher levels of hope. The findings suggest that using The Energy Model of Cumulative Grief is effective in providing culturally responsive grief and loss resources to practitioners and clients. There are far reaching implications with the use of technology to provide hope to those suffering from grief and loss worldwide through The Energy Model of Cumulative Grief.Keywords: grief, loss, grief energy, grieving brain
Procedia PDF Downloads 8116392 An Investigation of Influential Factors in Adopting the Cloud Computing in Saudi Arabia: An Application of Technology Acceptance Model
Authors: Shayem Saleh ALresheedi, Lu Song Feng, Abdulaziz Abdulwahab M. Fatani
Abstract:
Cloud computing is an emerging concept in the technological sphere. Its development enables many applications to avail information online and on demand. It is becoming an essential element for businesses due to its ability to diminish the costs of IT infrastructure and is being adopted in Saudi Arabia. However, there exist many factors that affect its adoption. Several researchers in the field have ignored the study of the TAM model for identifying the relevant factors and their impact for adopting of cloud computing. This study focuses on evaluating the acceptability of cloud computing and analyzing its impacting factors using Technology Acceptance Model (TAM) of technology adoption in Saudi Arabia. It suggests a model to examine the influential factors of the TAM model along with external factors of technical support in adapting the cloud computing. The proposed model has been tested through the use of multiple hypotheses based on calculation tools and collected data from customers through questionnaires. The findings of the study prove that the TAM model along with external factors can be applied in measuring the expected adoption of cloud computing. The study presents an investigation of influential factors and further recommendation in adopting cloud computing in Saudi Arabia.Keywords: cloud computing, acceptability, adoption, determinants
Procedia PDF Downloads 19016391 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models
Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel
Abstract:
Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling
Procedia PDF Downloads 16316390 An Alternative Stratified Cox Model for Correlated Variables in Infant Mortality
Authors: K. A. Adeleke
Abstract:
Often in epidemiological research, introducing stratified Cox model can account for the existence of interactions of some inherent factors with some major/noticeable factors. This research work aimed at modelling correlated variables in infant mortality with the existence of some inherent factors affecting the infant survival function. An alternative semiparametric Stratified Cox model is proposed with a view to take care of multilevel factors that have interactions with others. This, however, was used as a tool to model infant mortality data from Nigeria Demographic and Health Survey (NDHS) with some multilevel factors (Tetanus, Polio, and Breastfeeding) having correlation with main factors (Sex, Size, and Mode of Delivery). Asymptotic properties of the estimators are also studied via simulation. The tested model via data showed good fit and performed differently depending on the levels of the interaction of the strata variable Z*. An evidence that the baseline hazard functions and regression coefficients are not the same from stratum to stratum provides a gain in information as against the usage of Cox model. Simulation result showed that the present method produced better estimates in terms of bias, lower standard errors, and or mean square errors.Keywords: stratified Cox, semiparametric model, infant mortality, multilevel factors, cofounding variables
Procedia PDF Downloads 55516389 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System
Authors: Deyu Zhou, Xiao Xue, Lizhen Cui
Abstract:
With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks
Procedia PDF Downloads 7816388 Improving Post Release Outcomes
Authors: Michael Airton
Abstract:
This case study examines the development of a new service delivery model for prisons that focuses on using NGO’s to provide more effective case management and post release support functions. The model includes the co-design of the service delivery model and innovative commercial agreements that encourage embedded service providers within the prison and continuity of services post release with outcomes based payment mechanisms. The collaboration of prison staff, probation and parole officers and NGO’s is critical to the success of the model and its ability to deliver value and positive outcomes in relation to desistance from offending.Keywords: collaborative service delivery, desistance, non-government organisations, post release support services
Procedia PDF Downloads 38916387 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis
Procedia PDF Downloads 38216386 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 40816385 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD
Procedia PDF Downloads 20016384 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures
Authors: Semra Sirin Kiris
Abstract:
Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete
Procedia PDF Downloads 15016383 Two Quasiparticle Rotor Model for Deformed Nuclei
Authors: Alpana Goel, Kawalpreet Kalra
Abstract:
The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.Keywords: deformed nuclei, signature effects, signature inversion, signature reversal
Procedia PDF Downloads 15716382 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication
Authors: M. Guemmadi, A. Ouibrahim
Abstract:
This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity
Procedia PDF Downloads 541