Search results for: statistical data
26548 Insulin Resistance in Early Postmenopausal Women Can Be Attenuated by Regular Practice of 12 Weeks of Yoga Therapy
Authors: Praveena Sinha
Abstract:
Context: Diabetes is a global public health burden, particularly affecting postmenopausal women. Insulin resistance (IR) is prevalent in this population, and it is associated with an increased risk of developing type 2 diabetes. Yoga therapy is gaining attention as a complementary intervention for diabetes due to its potential to address stress psychophysiology. This study focuses on the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Research Aim: The aim of this research is to investigate the effect of a 3-month long yoga practice on insulin resistance in early postmenopausal women. Methodology: The study conducted a prospective longitudinal design with 67 women within five years of menopause. Participants were divided into two groups based on their willingness to join yoga. The Yoga group (n = 37) received routine gynecological management along with an integrated yoga module, while the Non-Yoga group (n = 30) received only routine management. Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) method before and after the intervention. Statistical analysis was performed using GraphPad Prism Version 5 software, with statistical significance set at P < 0.05. Findings: The results indicate a significant decrease in serum fasting insulin levels and HOMA-IR measurements in the Yoga group, although the decrease did not reach statistical significance. In contrast, the Non-Yoga group showed a significant rise in serum fasting insulin levels and HOMA-IR measurements after 3 months, suggesting a detrimental effect on insulin resistance in these postmenopausal women. Theoretical Importance: This study provides evidence that a 12-week yoga practice can attenuate the increase in insulin resistance in early postmenopausal women. It highlights the potential of yoga as a preventive measure against the early onset of insulin resistance and the development of type 2 diabetes mellitus. Regular yoga practice can be a valuable tool in addressing hormonal imbalances associated with early postmenopause, leading to a decrease in morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in this population. Data Collection and Analysis Procedures: Data collection involved measuring serum fasting insulin levels and calculating HOMA-IR. Statistical analysis was performed using GraphPad Prism Version 5 software, and mean values with standard error of the mean were reported. The significance level was set at P < 0.05. Question Addressed: The study aimed to address whether a 3-month long yoga practice could attenuate insulin resistance in early postmenopausal women. Conclusion: The research findings support the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Regular yoga practice has the potential to prevent the early onset of insulin resistance and the development of type 2 diabetes mellitus in this population. By addressing the hormonal imbalances associated with early post menopause, yoga could significantly decrease morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in these subjects.Keywords: post menopause, insulin resistance, HOMA-IR, yoga, type 2 diabetes mellitus
Procedia PDF Downloads 7526547 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India
Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit
Abstract:
Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique
Procedia PDF Downloads 13226546 On the Fourth-Order Hybrid Beta Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
This paper introduces a family of fourth-order hybrid beta polynomial kernels developed for statistical analysis. The assessment of these kernels' performance centers on two critical metrics: asymptotic mean integrated squared error (AMISE) and kernel efficiency. Through the utilization of both simulated and real-world datasets, a comprehensive evaluation was conducted, facilitating a thorough comparison with conventional fourth-order polynomial kernels. The evaluation procedure encompassed the computation of AMISE and efficiency values for both the proposed hybrid kernels and the established classical kernels. The consistently observed trend was the superior performance of the hybrid kernels when compared to their classical counterparts. This trend persisted across diverse datasets, underscoring the resilience and efficacy of the hybrid approach. By leveraging these performance metrics and conducting evaluations on both simulated and real-world data, this study furnishes compelling evidence in favour of the superiority of the proposed hybrid beta polynomial kernels. The discernible enhancement in performance, as indicated by lower AMISE values and higher efficiency scores, strongly suggests that the proposed kernels offer heightened suitability for statistical analysis tasks when compared to traditional kernels.Keywords: AMISE, efficiency, fourth-order Kernels, hybrid Kernels, Kernel density estimation
Procedia PDF Downloads 7426545 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models
Authors: Katja Ignatieva, Patrick Wong
Abstract:
We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo
Procedia PDF Downloads 10926544 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia
Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda
Abstract:
This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers
Procedia PDF Downloads 18126543 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis
Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias
Abstract:
Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification
Procedia PDF Downloads 36826542 Frame to Frameless: Stereotactic Operation Progress in Robot Time
Authors: Zengmin Tian, Bin Lv, Rui Hui, Yupeng Liu, Chuan Wang, Qing Liu, Hongyu Li, Yan Qi, Li Song
Abstract:
Objective Robot was used for replacement of the frame in recent years. The paper is to investigate the safety and effectiveness of frameless stereotactic surgery in the treatment of children with cerebral palsy. Methods Clinical data of 425 children with spastic cerebral palsy were retrospectively analyzed. The patients were treated with robot-assistant frameless stereotactic surgery of nuclear mass destruction. The motor function was evaluated by gross motor function measure-88 (GMFM-88) before the operation, 1 week and 3 months after the operation respectively. The statistical analysis was performed. Results The postoperative CT showed that the destruction area covered the predetermined target in all the patients. Minimal bleeding of puncture channel occurred in 2 patient, and mild fever in 3 cases. Otherwise, there was no severe surgical complication occurred. The GMFM-88 scores were 49.1±22.5 before the operation, 52.8±24.2 and 64.2±21.4 at the time of 1 week and 3 months after the operation, respectively. There was statistical difference between before and after the operation (P<0.01). After 3 months, the total effective rate was 98.1%, and the average improvement rate of motor function was 24.3% . Conclusion Replaced the traditional frame, the robot-assistant frameless stereotactic surgery is safe and reliable for children with spastic cerebral palsy, which has positive significance in improving patients’ motor function.Keywords: cerebral palsy, robotics, stereotactic techniques, frameless operation
Procedia PDF Downloads 9426541 Effect of White Roofing on Refrigerated Buildings
Authors: Samuel Matylewicz, K. W. Goossen
Abstract:
The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes
Procedia PDF Downloads 13226540 Recent Advances in Data Warehouse
Authors: Fahad Hanash Alzahrani
Abstract:
This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing
Procedia PDF Downloads 40726539 A Sociocybernetics Data Analysis Using Causality in Tourism Networks
Authors: M. Lloret-Climent, J. Nescolarde-Selva
Abstract:
The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.Keywords: attractor, invariant set, tourist flows, orbits, social responsibility, tourism, tourist variables
Procedia PDF Downloads 51526538 How to Use Big Data in Logistics Issues
Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy
Abstract:
Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.Keywords: big data, logistics, operational efficiency, risk management
Procedia PDF Downloads 64426537 Improvement of Water Distillation Plant by Using Statistical Process Control System
Authors: Qasim Kriri, Harsh B. Desai
Abstract:
Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.Keywords: acceptable quality level, statistical quality control, control charts, process charts
Procedia PDF Downloads 19026536 International Marketing in Business Practice of Small and Medium-Sized Enterprises
Authors: K. Matušínská, Z. Bednarčík, M. Klepek
Abstract:
This paper examines international marketing in business practice of Czech exporting small and medium-sized enterprises (SMEs) with regard to the strategic perspectives. Research was focused on Czech exporting SMEs from Moravian-Silesia region and their behaviour on international markets. For purpose of collecting data, a questionnaire was given to 262 SMEs involved in international business. Statistics utilized in this research included frequency, mean, percentage, and chi-square test. Data were analysed by Statistical Package for the Social Sciences software. The research analysis disclosed that there is certain space for improvement in strategic marketing especially in marketing research, perception of cultural and social differences, product adaptation and usage of marketing communication tools.Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing
Procedia PDF Downloads 33526535 Variation of Phytoplankton Biomass in the East China Sea Based on MODIS Data
Authors: Yumei Wu, Xiaoyan Dang, Shenglong Yang, Shengmao Zhang
Abstract:
The East China Sea is one of four main seas in China, where there are many fishery resources. Some important fishing grounds, such as Zhousan fishing ground important to society. But the eco-environment is destroyed seriously due to the rapid developing of industry and economy these years. In this paper, about twenty-year satellite data from MODIS and the statistical information of marine environment from the China marine environmental quality bulletin were applied to do the research. The chlorophyll-a concentration data from MODIS were dealt with in the East China Sea and then used to analyze the features and variations of plankton biomass in recent years. The statistics method was used to obtain their spatial and temporal features. The plankton biomass in the Yangtze River estuary and the Taizhou region were highest. The high phytoplankton biomass usually appeared between the 88th day to the 240th day (end-March - August). In the peak time of phytoplankton blooms, the Taizhou islands was the earliest, and the South China Sea was the latest. The intensity and period of phytoplankton blooms were connected with the global climate change. This work give us confidence to use satellite data to do more researches about the China Sea, and it also provides some help for us to know about the eco-environmental variation of the East China Sea and regional effect from global climate change.Keywords: the East China Sea, phytoplankton biomass, temporal and spatial variation, phytoplankton bloom
Procedia PDF Downloads 33226534 The Effect of an Occupational Therapy Programme on Sewing Machine Operators
Authors: N. Dunleavy, E. Lovemore, K. Siljeur, D. Jackson, M. Hendricks, M. Hoosain, N. Plastow, S. Marais
Abstract:
Background: The work requirements of sewing machine operators cause physical and emotional strain. Past ergonomic interventions have been provided to alleviate physical concerns; however, a holistic, multimodal intervention was needed to improve these factors. Aim: The study aimed to examine the effect of an occupational therapy programme on sewing machine operators’ pain, mental health, and productivity within a factory in the South African context. Methods: A pilot randomised control trial was conducted with 22 sewing machine operators within a single factory. Stratified randomisation was used to determine the experimental (EG) and control groups (CG), using measures for pain intensity, level of depression (mental health), and productivity rates as stratification variables. The EG received the multimodal intervention, incorporating education, seating adaptations, and mental health intervention. In three months, the CG will receive the same intervention. Pre- and post-intervention testing have occurred with upcoming three- and six-month follow-ups. Results: Immediate results indicate a statistically significant decrease in pain in both experimental and control groups; no change in productivity scores and depression between the two groups. This may be attributed to external factors. The values for depression further showed no statistical significance between the two groups and within pre-and post-test results. The Statistical Program for Social Sciences (SPSS) version-24 was used as the data analysis testing, where all the tests will be evaluated at a 5% significance level. Contribution of research: The research adds to the body of knowledge informing the Occupational Therapy role in work settings, providing evidence on the effectiveness of workplace-based multimodal interventions. Conclusion: The study provides initial data on the effectiveness of a pilot randomised control trial on pain and mental health in South Africa. Results indicated no quantitative change between the experimental and control groups; however, qualitative data suggest a clinical significance of the findings.Keywords: ergonomics programme, occupational therapy, sewing machine operators, workplace-based multimodal interventions
Procedia PDF Downloads 8926533 The Effect of Core Training on Physical Fitness Characteristics in Male Volleyball Players
Authors: Sibel Karacaoglu, Fatma Ç. Kayapinar
Abstract:
The aim of the study is to investigate the effect of the core training program on physical fitness characteristics and body composition in male volleyball players. 26 male university volleyball team players aged between 19 to 24 years who had no health problems and injury participated in the study. Subjects were divided into training (TG) and control groups (CG) as randomly. Data from twenty-one players who completed all training sessions were used for statistical analysis (TG,n=11; CG,n=10). A core training program was applied to the training group three days a week for 10 weeks. On the other hand, the control group did not receive any training. Before and after the 10-week training program, pre- and post-testing comprised of body composition measurements (weight, BMI, bioelectrical impedance analysis) and physical fitness measurements including flexibility (sit and reach test), muscle strength (back, leg and grip strength by dynamometer), muscle endurance (sit-ups and push-ups tests), power (one-legged jump and vertical jump tests), speed (20m sprint, 30m sprint) and balance tests (one-legged standing test) were performed. Changes of pre- and post- test values of the groups were determined by using dependent t test. According to the statistical analysis of data, no significant difference was found in terms of body composition in the both groups for pre- and post- test values. In the training group, all physical fitness measurements improved significantly after core training program (p<0.05) except 30m speed and handgrip strength (p>0.05). On the hand, only 20m speed test values improved after post-test period (p<0.05), but the other physical fitness tests values did not differ (p>0.05) between pre- and post- test measurement in the control group. The results of the study suggest that the core training program has positive effect on physical fitness characteristics in male volleyball players.Keywords: body composition, core training, physical fitness, volleyball
Procedia PDF Downloads 34926532 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 8126531 Theorizing Optimal Use of Numbers and Anecdotes: The Science of Storytelling in Newsrooms
Authors: Hai L. Tran
Abstract:
When covering events and issues, the news media often employ both personal accounts as well as facts and figures. However, the process of using numbers and narratives in the newsroom is mostly operated through trial and error. There is a demonstrated need for the news industry to better understand the specific effects of storytelling and data-driven reporting on the audience as well as explanatory factors driving such effects. In the academic world, anecdotal evidence and statistical evidence have been studied in a mutually exclusive manner. Existing research tends to treat pertinent effects as though the use of one form precludes the other and as if a tradeoff is required. Meanwhile, narratives and statistical facts are often combined in various communication contexts, especially in news presentations. There is value in reconceptualizing and theorizing about both relative and collective impacts of numbers and narratives as well as the mechanism underlying such effects. The current undertaking seeks to link theory to practice by providing a complete picture of how and why people are influenced by information conveyed through quantitative and qualitative accounts. Specifically, the cognitive-experiential theory is invoked to argue that humans employ two distinct systems to process information. The rational system requires the processing of logical evidence effortful analytical cognitions, which are affect-free. Meanwhile, the experiential system is intuitive, rapid, automatic, and holistic, thereby demanding minimum cognitive resources and relating to the experience of affect. In certain situations, one system might dominate the other, but rational and experiential modes of processing operations in parallel and at the same time. As such, anecdotes and quantified facts impact audience response differently and a combination of data and narratives is more effective than either form of evidence. In addition, the present study identifies several media variables and human factors driving the effects of statistics and anecdotes. An integrative model is proposed to explain how message characteristics (modality, vividness, salience, congruency, position) and individual differences (involvement, numeracy skills, cognitive resources, cultural orientation) impact selective exposure, which in turn activates pertinent modes of processing, and thereby induces corresponding responses. The present study represents a step toward bridging theoretical frameworks from various disciplines to better understand the specific effects and the conditions under which the use of anecdotal evidence and/or statistical evidence enhances or undermines information processing. In addition to theoretical contributions, this research helps inform news professionals about the benefits and pitfalls of incorporating quantitative and qualitative accounts in reporting. It proposes a typology of possible scenarios and appropriate strategies for journalists to use when presenting news with anecdotes and numbers.Keywords: data, narrative, number, anecdote, storytelling, news
Procedia PDF Downloads 8326530 Presenting a Model Of Empowering New Knowledge-based Companies In Iran Insurance Industry
Authors: Pedram Saadati, Zahra Nazari
Abstract:
In the last decade, the role and importance of knowledge-based technological businesses in the insurance industry has greatly increased, and due to the weakness of previous studies in Iran, the current research deals with the design of the InsurTech empowerment model. In order to obtain the conceptual model of the research, a hybrid framework has been used. The statistical population of the research in the qualitative part were experts, and in the quantitative part, the InsurTech activists. The tools of data collection in the qualitative part were in-depth and semi-structured interviews and structured self-interaction matrix, and in the quantitative part, a researcher-made questionnaire. In the qualitative part, 55 indicators, 20 components and 8 concepts (dimensions) were obtained by the content analysis method, then the relationships of the concepts with each other and the levels of the components were investigated. In the quantitative part, the information was analyzed using the descriptive analytical method in the way of path analysis and confirmatory factor analysis. The proposed model consists of eight dimensions of supporter capability, supervisor of insurance innovation ecosystem, managerial, financial, technological, marketing, opportunity identification, innovative InsurTech capabilities. The results of statistical tests in identifying the relationships of the concepts with each other have been examined in detail and suggestions have been presented in the conclusion section.Keywords: insurTech, knowledge-base, empowerment model, factor analysis, insurance
Procedia PDF Downloads 4926529 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 20526528 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data
Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu
Abstract:
Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis
Procedia PDF Downloads 13526527 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 16526526 Multi-Elemental Analysis Using Inductively Coupled Plasma Mass Spectrometry for the Geographical Origin Discrimination of Greek Giant Beans “Gigantes Elefantes”
Authors: Eleni C. Mazarakioti, Anastasios Zotos, Anna-Akrivi Thomatou, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas
Abstract:
“Gigantes Elefantes” is a particularly dynamic crop of giant beans cultivated in western Macedonia (Greece). This variety of large beans growing in this area and specifically in the regions of Prespes and Kastoria is a protected designation of origin (PDO) species with high nutritional quality. Mislabeling of geographical origin and blending with unidentified samples are common fraudulent practices in Greek food market with financial and possible health consequences. In the last decades, multi-elemental composition analysis has been used in identifying the geographical origin of foods and agricultural products. In an attempt to discriminate the authenticity of Greek beans, multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, Zr) was performed by inductively coupled plasma mass spectrometry (ICP-MS) on 320 samples of beans, originated from Greece (Prespes and Kastoria), China and Poland. All samples were collected during the autumn of 2021. The obtained data were analysed by principal component analysis (PCA), an unsupervised statistical method, which allows for to reduce of the dimensionality of the enormous datasets. Statistical analysis revealed a clear separation of beans that had been cultivated in Greece compared with those from China and Poland. An adequate discrimination of geographical origin between bean samples originating from the two Greece regions, Prespes and Kastoria, was also evident. Our results suggest that multi-elemental analysis combined with the appropriate multivariate statistical method could be a useful tool for bean’s geographical authentication. Acknowledgment: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.Keywords: geographical origin, authenticity, multi-elemental analysis, beans, ICP-MS, PCA
Procedia PDF Downloads 8426525 The Value of Dynamic Priorities in Motor Learning between Some Basic Skills in Beginner's Basketball, U14 Years
Authors: Guebli Abdelkader, Regiueg Madani, Sbaa Bouabdellah
Abstract:
The goals of this study are to find ways to determine the value of dynamic priorities in motor learning between some basic skills in beginner’s basketball (U14), based on skills of shooting and defense against the shooter. Our role is to expose the statistical results in compare & correlation between samples of study in tests skills for the shooting and defense against the shooter. In order to achieve this objective, we have chosen 40 boys in middle school represented in four groups, two controls group’s (CS1, CS2) ,and two experimental groups (ES1: training on skill of shooting, skill of defense against the shooter, ES2: experimental group training on skill of defense against the shooter, skill of shooting). For the statistical analysis, we have chosen (F & T) tests for the statistical differences, and test (R) for the correlation analysis. Based on the analyses statistics, we confirm the importance of classifying priorities of basketball basic skills during the motor learning process. Admit that the benefits of experimental group training are to economics in the time needed for acquiring new motor kinetic skills in basketball. In the priority of ES2 as successful dynamic motor learning method to enhance the basic skills among beginner’s basketball.Keywords: basic skills, basketball, motor learning, children
Procedia PDF Downloads 17326524 Comparative Evaluation of Equity Indicators in the Matikiw Community-Based Forest Management Project in Pakil, Laguna and the Minayutan and Bacong Sigsigan Community-Based Forest Management Project in Famy, Laguna
Authors: Katherine Arquio
Abstract:
Community-based Forest Management (CBFM) is one of the integrative programs that slowly turned the course of forest management from traditional corporate to community-based practice resulting to people empowerment. As such, one of its goals is to promote socio-economic welfare among the people in the community in which social equity is included. This study aims to look at the equity aspect of the program, particularly if there are equity differences between two CBFM sites- Matikiw in Pakil, Laguna and Minayutan and Bacong Sigsigan in Famy, Laguna. Equity indicators were identified first, since these will be the basis of the questions that will be asked on the survey, after this, the survey proper was conducted, and finally, the analysis. Two tailed t-test was used as statistical tool since the difference between the two sites is the focus of the study. Statistical analysis was done through the use of STATA program, a statistical software. There were 32 indicators identified and results showed that, out of these indicators, only 13 were found significantly different between the two. The 13 indicators were significantly observed only in Matikiw; the other 19 indicators were commonly observed in both areas and are conducive as equity indicators for the CBFM program.Keywords: social equity, CBFM, social forestry, equity indicators
Procedia PDF Downloads 38726523 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 8226522 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 4626521 The Impact of Public Open Space System on Housing Price in Chicago
Authors: Si Chen, Le Zhang, Xian He
Abstract:
The research explored the influences of public open space system on housing price through hedonic models, in order to support better open space plans and economic policies. We have three initial hypotheses: 1) public open space system has an overall positive influence on surrounding housing prices. 2) Different public open space types have different levels of influence on motivating surrounding housing prices. 3) Walking and driving accessibilities from property to public open spaces have different statistical relation with housing prices. Cook County, Illinois, was chosen to be a study area since data availability, sufficient open space types, and long-term open space preservation strategies. We considered the housing attributes, driving and walking accessibility scores from houses to nearby public open spaces, and driving accessibility scores to hospitals as influential features and used real housing sales price in 2010 as a dependent variable in the built hedonic model. Through ordinary least squares (OLS) regression analysis, General Moran’s I analysis and geographically weighted regression analysis, we observed the statistical relations between public open spaces and housing sale prices in the three built hedonic models and confirmed all three hypotheses.Keywords: hedonic model, public open space, housing sale price, regression analysis, accessibility score
Procedia PDF Downloads 13826520 Statistical Analysis of Extreme Flow (Regions of Chlef)
Authors: Bouthiba Amina
Abstract:
The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law.Keywords: return period, extreme flow, statistics laws, Gumbel, estimation
Procedia PDF Downloads 8126519 Using Discriminant Analysis to Forecast Crime Rate in Nigeria
Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele
Abstract:
This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda
Procedia PDF Downloads 475