Search results for: solid/gas sorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2407

Search results for: solid/gas sorption

1927 The Use of Superplastic Tin-Lead Alloy as A solid Lubricant in Free Upsetting of Aluminum and Brass

Authors: Adnan I. O. Zaid, Hebah B. Melhem, Ahmad Qandil

Abstract:

The main function of a lubricant in any forming process is to reduce friction between the work piece and the die set, hence reducing the force and energy requirement for forming process and to achieve homogeneous deformation. The free upsetting test is an important open forging test. In this paper, super plastic tin-lead alloy is used as solid lubricant in the free upsetting test of non-ferrous metals and compared with eight different lubricants using the following three criteria: one comparing the value of the reduction in height percentages, i.e. the engineering strain, in identical specimens of the same material under the effect of the same compressive force. The second is comparing the amount of barreling produced in each of the identical specimens, at each lubricant. The third criterion is using the specific energy, i.e. the energy per unit volume consumed in forming each material, using the different lubricants to produce the same reduction in height percentage of identical specimens from each of the two materials, namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work, under the same compression force among the different used lubricants.

Keywords: aluminum, brass, different lubricants, free upsetting, solid lubricants, superplastic tin-lead alloy

Procedia PDF Downloads 464
1926 Effect of Solid Waste on the Sustainability of the Water Resource Quality in the Gbarain Catchment of the Niger Delta Region of Nigeria

Authors: Davidson E. Egirani, Nanfe R. Poyi, Napoleon Wessey

Abstract:

This paper would report on the effect of solid waste on water resource quality in the Gbarain catchment of the Niger Delta Region of Nigeria. The Gbarain catchment presently hosts two waste-dump sites located along the flanks of a seasonal flow stream and perennially waterlogged terrain. The anthropogenic activity has significantly affected the quality of surface and groundwater in the Gbarain catchment. These wastes have made the water resource environment toxic leading to the poisoning of aquatic life. The contaminated water resources could lead to serious environmental and human health challenges such as low agricultural yields to loss of vital human organs. The contamination is via geological processes such as seepage and direct infiltration of contaminants into watercourses. The results obtained from field and experimental investigations followed by modeling, and graphical interpretation indicate heavy metal load and fecal pollution in some of the groundwater. The metal load, Escherichia coli, and total coliforms counts exceed the international and regional recommended limits. The contaminate values include Lead (> 0.01 mg/L), Mercury (> 0.006 mg/L), Manganese (> 0.4 mg/L and Escherichia coli (> 0 per 100ml) of the samples. Land use planning, enactment, and implementation of environmental laws are necessary for this region, for effective surface water and groundwater resource management.

Keywords: aquatic life, solid waste, environmental health, human health, waste-dump site, water-resource environment

Procedia PDF Downloads 143
1925 New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry

Authors: Vijayalakshmi Marella, NageswaraRaoPilli

Abstract:

This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies.

Keywords: Montelukast, tandem mass spectrometry, montelukast d6, FDA guidelines

Procedia PDF Downloads 315
1924 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases

Authors: S. Naveen, V. Sivasubramanian

Abstract:

A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.

Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release

Procedia PDF Downloads 439
1923 Waste Minimization through Vermicompost: An Alternative Approach

Authors: Mary Fabiola

Abstract:

Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous.

Keywords: pollution, solid wastes, vermicompost, waste recycling

Procedia PDF Downloads 431
1922 Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose

Authors: Wega Trisunaryanti, Hesty Kusumastuti, Iip Izul Falah, Muhammad Fajar Marsuki, Rahmad Nuryanto

Abstract:

Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose.

Keywords: catalyst, gelatin, hydrocracking, mesopore silica-alumina, α-cellulose

Procedia PDF Downloads 163
1921 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 589
1920 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: solid lubricant, sliding wear, grey cast iron, zinc based metal matrix composites

Procedia PDF Downloads 317
1919 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management

Procedia PDF Downloads 238
1918 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore

Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan

Abstract:

The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.

Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore

Procedia PDF Downloads 290
1917 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 144
1916 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus

Authors: Hilary Rutto, John Kabuba

Abstract:

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Keywords: calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite

Procedia PDF Downloads 284
1915 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 243
1914 Eco-Efficient Self-Compacting Concrete for Sustainable Building

Authors: Valeria Corinaldesi

Abstract:

In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.

Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building

Procedia PDF Downloads 84
1913 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: phase change material, drug release kinetics, double emulsion, microfluidics

Procedia PDF Downloads 357
1912 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 241
1911 Optimization of Fermentation Conditions for Extracellular Production of the Oncolytic Enzyme, L-Asparaginase, by New Subsp. Streptomyces Rochei Subsp. Chromatogenes NEAE-K Using Response Surface Methodology under Solid State Fermentation

Authors: Noura El-Ahmady El-Naggar

Abstract:

L-asparaginase is an important enzyme as therapeutic agents used in combination therapy with other drugs in the treatment of acute lymphoblastic leukemia in children. L-asparaginase producing actinomycete strain, NEAE-K, was isolated from soil sample and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and sequencing product (1532 bp) was deposited in the GenBank database under accession number KJ200343. The study was conducted to screen parameters affecting the production of L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K on solid state fermentation using Plackett–Burman experimental design. Sixteen different independent variables including incubation time, moisture content, inoculum size, temperature, pH, soybean meal+ wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2, and three dummy variables were screened in Plackett–Burman experimental design of 20 trials. The most significant independent variables affecting enzyme production (dextrose, L-asparagine and K2HPO4) were further optimized by the central composite design. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K from solid state fermentation: g/L (soybean meal+ wheat bran 15, dextrose 3, fructose 4, L-asparagine 8, yeast extract 2, KNO3 1, K2HPO4 2, MgSO4.7H2O 0.5, NaCl 0.1, FeSO4. 7H2O 0.02, CaCl2 0.01), incubation time 7 days, moisture content 50%, inoculum size 3 mL, temperature 30°C, pH 8.5.

Keywords: streptomyces rochei subsp. chromatogenes neae-k, 16s rrna, identification, solid state fermentation, l-asparaginase production, plackett-burman design, central composite design

Procedia PDF Downloads 407
1910 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 491
1909 The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data.

Keywords: Bentabet spherical geometric model, continuous slowing down approximation, stopping powers, ranges, mean penetration depth

Procedia PDF Downloads 641
1908 Dissolution Kinetics of Chevreul’s Salt in Ammonium Cloride Solutions

Authors: Mustafa Sertçelik, Turan Çalban, Hacali Necefoğlu, Sabri Çolak

Abstract:

In this study, Chevreul’s salt solubility and its dissolution kinetics in ammonium chloride solutions were investigated. Chevreul’s salt that we used in the studies was obtained by using the optimum conditions (ammonium sulphide concentration; 0,4 M, copper sulphate concentration; 0,25 M, temperature; 60°C, stirring speed; 600 rev/min, pH; 4 and reaction time; 15 mins) determined by T. Çalban et al. Chevreul’s salt solubility in ammonium chloride solutions and the kinetics of dissolution were investigated. The selected parameters that affect solubility were reaction temperature, concentration of ammonium chloride, stirring speed, and solid/liquid ratio. Correlation of experimental results had been achieved using linear regression implemented in the statistical package program statistica. The effect of parameters on Chevreul’s salt solubility was examined and integrated rate expression of dissolution rate was found using kinetic models in solid-liquid heterogeneous reactions. The results revealed that the dissolution rate of Chevreul’s salt was decreasing while temperature, concentration of ammonium chloride and stirring speed were increasing. On the other hand, dissolution rate was found to be decreasing with the increase of solid/liquid ratio. Based on result of the applications of the obtained experimental results to the kinetic models, we can deduce that Chevreul’s salt dissolution rate is controlled by diffusion through the ash (or product layer). Activation energy of the reaction of dissolution was found as 74.83 kJ/mol. The integrated rate expression along with the effects of parameters on Chevreul's salt solubility was found to be as follows: 1-3(1-X)2/3+2(1-X)= [2,96.1013.(CA)3,08 .(S/L)-038.(W)1,23 e-9001,2/T].t

Keywords: Chevreul's salt, copper, ammonium chloride, ammonium sulphide, dissolution kinetics

Procedia PDF Downloads 308
1907 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 346
1906 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process

Authors: Dariush Jafari, Seyed Ali Jafari

Abstract:

The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.

Keywords: ANN, biosorption, cadmium, packed-bed, potable water

Procedia PDF Downloads 430
1905 Antifungal Potential of Higher Basidiomycetes Mushrooms

Authors: Tamar Khardziani, Violeta Berikashvili, Mariam Rusitashvili, Eva Kachlishvili, Vladimir Elisashvili, Mikheil Asatiani

Abstract:

Last years, the search for natural sources of novel and effective antifungal substances became a scientific and technological challenge. In the present research, thirty basidiomycetes isolated from various ecological niches of Georgia and belonging to different taxonomic groups were screened for their antifungal activities against pathogenic fungi such as Aspergillus, Fusarium, and Guignardia bidwellii. Among mushroom tested, several potential producers of antifungal substances have been revealed, such as Schizophyllum commune, Lentinula edodes, Ganoderma abietinum, Fomes fomentarius, Hericium erinaceus, and Trametes versicolor. For mushroom cultivation and expression of antifungal potential, submerged and solid-state fermentations of different plant raw materials were performed and various approaches and strategies have been exploited. Sch. commune appeared as a most promising producer of antifungal compounds. It was established that among different agro-industrial wastes, the presence of mandarin juice production waste in a nutrient medium, causing the significant increase of antifungal activity Sch. commune (growth inhibition: Aspergillus – 59 %, Fusarium – 55 %, G. bidwellii – 78 %, after 3, 2 and 4 days of cultivation, respectively). Besides this, Sch. commune demonstrate similar antifungal activities in the presence of glucose, glycerol, maltose, mannitol, and xylose, and growth inhibition of Fusarium ranged in 41 % - 49 % during 6 days of cultivation. Inhibition of Aspergillus growth inhibition varied in 27 % - 36 %, and inhibition of G. bidwellii was in the range 49 % - 61 %, respectively. Sch. commune under solid-state fermentation of mandarin peels at 13 days of cultivation demonstrates powerful growth inhibition of pathogenic fungi (growth inhibition: Aspergillus – 50 %, Fusarium – 61 %, G. bidwellii – 68 %, after 3, 4, and 4 days of cultivation, respectively) as well as at 20 days old mushroom (growth inhibition: Aspergillus – 41 %, Fusarium – 54 %, G. bidwellii – 66 %, after 3 days of cultivation). It was established that Sch. commune was effective as a producer of antifungal compounds in submerged as well as in solid-state fermentation. Finally, performed study confirms that the higher basidiomycetes possess antifungal potential, which strongly depends on the physiological factors of growth. Acknowledgments: The work was implemented with the financial support of fundamental science project FR-19-3719 by the Shota Rustaveli National Science Foundation of Georgia.

Keywords: antifungal potential, higher basidiomycetes, pathogenic fungi, submerged and solid-state fermentation

Procedia PDF Downloads 144
1904 Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+.

Keywords: solid state, sol-gel, silica, coating, photoluminescence

Procedia PDF Downloads 217
1903 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 175
1902 Study the Performance of Metal-Organic Framework in Adsorptive Desulfurization for Gas Oil

Authors: Hoda A. Mohammed, Esraa M. El-Fawal, Howaida M. Abd El-Salam

Abstract:

Organic sulfurs in fuel oil cause serious environmental pollution and health problems. The important future direction for liquid fuel desulfurization is adsorptive desulfurization technology due to its simplicity, mild operating condition, and low cost. In this work, the well-prepared Nickel NPs were incorporated in a highly porous metal-organic framework MIL-101(Cr)) to produce Ni/Cr-MOF composite. Besides, the synthesis of Ni/Cr-MOF in the presence of Bi₂MoO₆/AC to prepare Bi₂MoO₆/AC@Ni/Cr-MOF. All the prepared composites were synthesized via a facile technique under ambient conditions to remove organosulfur compounds. The XRD, FT-IR, SEM, and BET techniques were used to characterize the prepared composites. The desulfurization performance of real gas oil by Bi₂MoO₆/AC, Ni/Cr-MOF, and Bi₂MoO₆/AC@Ni/Cr-MOF was investigated at different adsorbent doses and contact times. Bi₂MoO₆/AC@Ni/Cr-MOF shows the highest desulfurization performance, with removal efficiency reached to 80% at optimum conditions for a contact time of 4 hours.

Keywords: desulfurization, gas oil, metal-organic framework, sorption characteristics

Procedia PDF Downloads 80
1901 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery

Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand

Abstract:

Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.

Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles

Procedia PDF Downloads 418
1900 Post-Harvest Preservation of Mango Fruit Using Freeze and Tray Drying Methods

Authors: O. A. Adeyeye, E. R. Sadiku, Periyar Selvam Sellamuthu, Anand Babu Perumal, Reshma B. Nambiar

Abstract:

Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit and only very few off-seasonal cultivars are available in the market for consumption. Therefore, to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered. In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.

Keywords: postharvest, Mangos, cultivar, total soluble solid, total phenol content, antioxidant

Procedia PDF Downloads 352
1899 Inclusion Complexes of Some Imidazoline Drugs with Cucurbit[N]Uril (N=7,8): Preparation, Characterization and Theoretical Calculations

Authors: Fakhreldin O. Suliman, Alia H. Al-Battashi

Abstract:

This work explored the interaction of three different imidazoline drugs, naphazoline nitrate (NPH), oxymetazoline hydrochloride (OXY) and xylometazoline hydrochloride (XYL) with two different synthesized cucurbit[n]urils CB[n], cucurbit[7]uril (CB[7]) and cucuribit[8]uril (CB[8]). Three binary inclusion complexes have been investigated in solution and in the solid state. The solid complexes were obtained by lyophilization, whereas the physical mixtures of guests and hosts at a stoichiometric ratio of 1:1 were obtained for each drug. 1HNMR, electrospray ionization mass spectrometry (ESI-MS), and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was used to study the complexes prepared in aqueous media. The lyophilized solid complexes were characterized by Fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffractometry (PXRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). MS, FT-IR and PXRD experimental results established in this work reveal that NPH, OXY and XYL molecules form stable inclusion complexes with the two hosts. The TGA and DSC confirmed the enhancement of the thermal stability of each drug and the production of a thermally stable solid complex. The 1HNMR has shown that the protons of the guests faced shifting in ppm and broadening of their peaks upon the formation of inclusion complexes with the selected CB[n]. The aromatic protons of the guest exhibited the highest changes in the chemical shifts and shape of the NMR peaks, suggesting their inclusion into the cavity of the CB[n]. The diffusion coefficients (D), developed from the diffusion-controlled NMR Spectroscopy (DOSY) measurements, for the complexation of the selected imidazoline drugs with CB[7] and CB[8], were decreased in the presence of hosts compared to the free guests indicating the formation of the guest-host adduct. Furthermore, we conducted molecular dynamic simulations and quantum mechanics calculations on these complexes. The results of the theoretical study corroborate the experimental findings and have also shed light on the mechanism of inclusion of the guests into the two hosts. This study generates initial data for potential drug delivery or drug formulation systems for these three selected imidazoline drug compounds based on their inclusion into the CB[n] cavities.

Keywords: cucurbit[n]urils, imidazoline, inclusion complexes, molecular dynamics, DFT calculations, mass spectrometry

Procedia PDF Downloads 68
1898 Post Harvest Preservation of Mango Fruit Using Freeze Drying and Tray Drying Methods

Authors: O. A. Adeyeye, E. R. Sadiku, Selvam Sellamuthu Periyar, Babu Perumal Anand, B. Nambiar Reshma

Abstract:

Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit, and only very few off-seasonal species are available in the market for consumption. Therefore, in order to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.

Keywords: postharvest, mangos, cultivar, total soluble solid, total phenol content, antioxidant

Procedia PDF Downloads 390