Search results for: object tracking
1555 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1341554 Towards Expanding the Use of the Online Judge UnitJudge for Java Programming Exercises and Web Development Practices in Computer Science Education
Authors: Iván García-Magariño, Javier Bravo-Agapito, Marta López-Fernández
Abstract:
Online judges have proven their utility in partial auto-evaluation of programming short exercises in the last decades. UnitJudge online judge has the advantage of facilitating the evaluation of separate units to provide more segregate and meaningful feedback to students in complex exercises and practices. This paper discusses the use of UnitUdge in advanced Java object-oriented programming exercises and web development practices. This later usage has been proposed by means of the Selenium Java library and classes to provide the web address. Consequently, UnitJudge is an online judge system that can be applied in several subjects, and therefore, many other students would take advantage of self-testing their exercises. This paper presents the experiments with a Java programming exercise for learning Java object-oriented classes with a generic type. Considering 10 students who voluntarily used UnitJudge, 80% successfully learned this concept, passing the judge exercise with correct results.Keywords: online judges, programming skills, computer science education, auto-evaluation
Procedia PDF Downloads 1011553 Relativity in Toddlers' Understanding of the Physical World as Key to Misconceptions in the Science Classroom
Authors: Michael Hast
Abstract:
Within their first year, infants can differentiate between objects based on their weight. By at least 5 years children hold consistent weight-related misconceptions about the physical world, such as that heavy things fall faster than lighter ones because of their weight. Such misconceptions are seen as a challenge for science education since they are often highly resistant to change through instruction. Understanding the time point of emergence of such ideas could, therefore, be crucial for early science pedagogy. The paper thus discusses two studies that jointly address the issue by examining young children’s search behaviour in hidden displacement tasks under consideration of relative object weight. In both studies, they were tested with a heavy or a light ball, and they either had information about one of the balls only or both. In Study 1, 88 toddlers aged 2 to 3½ years watched a ball being dropped into a curved tube and were then allowed to search for the ball in three locations – one straight beneath the tube entrance, one where the curved tube lead to, and one that corresponded to neither of the previous outcomes. Success and failure at the task were not impacted by weight of the balls alone in any particular way. However, from around 3 years onwards, relative lightness, gained through having tactile experience of both balls beforehand, enhanced search success. Conversely, relative heaviness increased search errors such that children increasingly searched in the location immediately beneath the tube entry – known as the gravity bias. In Study 2, 60 toddlers aged 2, 2½ and 3 years watched a ball roll down a ramp and behind a screen with four doors, with a barrier placed along the ramp after one of four doors. Toddlers were allowed to open the doors to find the ball. While search accuracy generally increased with age, relative weight did not play a role in 2-year-olds’ search behaviour. Relative lightness improved 2½-year-olds’ searches. At 3 years, both relative lightness and relative heaviness had a significant impact, with the former improving search accuracy and the latter reducing it. Taken together, both studies suggest that between 2 and 3 years of age, relative object weight is increasingly taken into consideration in navigating naïve physical concepts. In particular, it appears to contribute to the early emergence of misconceptions relating to object weight. This insight from developmental psychology research may have consequences for early science education and related pedagogy towards early conceptual change.Keywords: conceptual development, early science education, intuitive physics, misconceptions, object weight
Procedia PDF Downloads 1901552 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2001551 Second-Order Complex Systems: Case Studies of Autonomy and Free Will
Authors: Eric Sanchis
Abstract:
Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.Keywords: autonomy, free will, synthetic property, vaporous complex systems
Procedia PDF Downloads 2051550 Performance Tracking of Thermal Plant Systems of Kuwait and Impact on the Environment
Authors: Abdullah Alharbi
Abstract:
Purpose: This research seeks to take a holistic strategic evaluation of the thermal power plants in Kuwait at both policy and technical level in order to allow a systematic retrofitting program. The new world order in energy generation and consumption demand that sources of energy can safeguard the use of natural resources and generate minimal impacts on the environment. For Kuwait, the energy used per capita is mainly associated with desalination plants. The overall impact of thermal power plant installations manifests indisposed of seawater and the health of marine life. Design/methodology/approach: The research adopts a case study based evaluation of performance data and documents of thermal plant installations in Kuwait. Findings: Research findings on the performance of existing thermal plants demand policy benchmarking with internationally acceptable standards in order to create clarity on decisions regarding demolition, retrofitting, or renewal. Research implications: This research has the potential to strategically inform and influence the piecemeal changes to power plants, including the replacement of power generation equipment, considering the varied technologies for thermal plants. Originality/value: This research provides evidence based data that can be useful for influencing operational efficiency after a holistic evaluation of existing capacity in comparison with future demands.Keywords: energy, Kuwait, performance, stainability, tracking, thermal plant
Procedia PDF Downloads 981549 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 801548 Theoretical Exploration for the Impact of Accounting for Special Methods in Connectivity-Based Cohesion Measurement
Authors: Jehad Al Dallal
Abstract:
Class cohesion is a key object-oriented software quality attribute that is used to evaluate the degree of relatedness of class attributes and methods. Researchers have proposed several class cohesion measures. However, the effect of considering the special methods (i.e., constructors, destructors, and access and delegation methods) in cohesion calculation is not thoroughly theoretically studied for most of them. In this paper, we address this issue for three popular connectivity-based class cohesion measures. For each of the considered measures we theoretically study the impact of including or excluding special methods on the values that are obtained by applying the measure. This study is based on analyzing the definitions and formulas that are proposed for the measures. The results show that including/excluding special methods has a considerable effect on the obtained cohesion values and that this effect varies from one measure to another. For each of the three connectivity-based measures, the proposed theoretical study recommended excluding the special methods in cohesion measurement.Keywords: object-oriented class, software quality, class cohesion measure, class cohesion, special methods
Procedia PDF Downloads 2971547 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery
Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie
Abstract:
This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method
Procedia PDF Downloads 4681546 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 4991545 Evaluating the Influence of Road Markings Retroreflectivity on Road Safety in Low Visibility Conditions
Authors: Darko Babic, Maja Modric, Dario Babic, Mario Fiolic
Abstract:
For road markings as a part of traffic control plan, it is considered to have a positive impact on road safety. Their importance is particularly evident in low visibility conditions when the field of vision and the driver's visual acuity are significantly reduced. The aim of this article is to analyze how road marking retroreflectivity affects the frequency of traffic accidents in low visibility conditions. For this purpose, 10,417.4 km single carriageway roads were analysed across Croatia in the period from 2012 to 2016. The research included accidents that may be significantly affected by marking retroreflectivity: head-on collisions, running off the road, hitting a stationary object on the road and hitting a stationary roadside object. The results have shown that the retroreflectivity level is negatively correlated to the total number of accidents and the number of casualties and injuries, which ultimately means that the risk of traffic accidents and deaths and/or injuries of participants will be lower with the increase of road markings retroreflectivity. These results may assist in defining minimum values of retroreflectivity that the markings must meet at any time as well as the suitable technologies and materials for their implementation.Keywords: retroreflectivity, road markings, traffic accidents, traffic safety
Procedia PDF Downloads 1531544 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 1381543 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D
Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach
Abstract:
We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity
Procedia PDF Downloads 4461542 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1441541 Optimal Sliding Mode Controller for Knee Flexion during Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.Keywords: optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons
Procedia PDF Downloads 821540 Tracking and Classifying Client Interactions with Personal Coaches
Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole
Abstract:
The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing
Procedia PDF Downloads 4331539 Ant-Tracking Attribute: A Model for Understanding Production Response
Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo
Abstract:
Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.Keywords: seismic, attributes, production, structural
Procedia PDF Downloads 701538 Layers of Identities in Nahdliyyin Mosque Architecture and Some Related Socio-Political Context Within
Authors: Yulia Eka Putrie, Widjaja Martokusumo
Abstract:
The development of architecture today indicates that an architectural object often does not represent one single identity only. One architectural object could represents layers of multiple identities of an increasingly complex society. Mosque architecture for example, is mainly associated with one religious identity; that mosque architecture serves as the representation of Islamic identity. However, on many occasions, mosque architecture also serves as the representation of other motives, such as political, social, even individual identity. In normal circumstances, these layers of identities are not always seen or realized by common people outside the community. They are only represented implicitly in some symbolic forms, activities, and events. On the other hand, in specific circumstances, these kinds of identities were represented explicitly in mosque architecture. This paper is a part of an initial research on the representation of socio-political identities in Nahdliyyin mosques in East Java, Indonesia. Nahdliyyin mosques were chosen as the object of research because of its significance in Indonesian socio-political context, because majority of Indonesian muslims are culturally associated with Nahdlatul Ulama (NU) with its aswaja doctrine. Some frictions in mosque ownership and management between Nahdliyyin and other islamic school of thoughts, has resulted in preventive efforts, where some of the efforts are related to the representation of their identity in their mosque architecture. The research is a field research that took place in Malang, East Java. Malang is one of main cities in East Java; a cultural and regional basis of NU and Nahdliyyin people. Formal analysis were conducted in ten large Nahdliyyin mosques in Malang. Some structured and in-depth interviews were also held to explore the motives of identity representation in some architectural aspects of the mosques. The result of this initial study indicates that there are layers of identities which were manifested in the studied mosques. These layers of identities in Nahdliyyin mosques were based on the same main values, but represented through various formal expressions. Furthermore, the study also brings the deeper understanding on socio-political context of mosques in Nahdliyyin culture.Keywords: Nahdliyyin mosque architecture, layers of identities, representation, Nahdlatul Ulama
Procedia PDF Downloads 5191537 The Principle of a Thought Formation: The Biological Base for a Thought
Authors: Ludmila Vucolova
Abstract:
The thought is a process that underlies consciousness and cognition and understanding its origin and processes is a longstanding goal of many academic disciplines. By integrating over twenty novel ideas and hypotheses of this theoretical proposal, we can speculate that thought is an emergent property of coded neural events, translating the electro-chemical interactions of the body with its environment—the objects of sensory stimulation, X, and Y. The latter is a self- generated feedback entity, resulting from the arbitrary pattern of the motion of a body’s motor repertory (M). A culmination of these neural events gives rise to a thought: a state of identity between an observed object X and a symbol Y. It manifests as a “state of awareness” or “state of knowing” and forms our perception of the physical world. The values of the variables of a construct—X (object), S1 (sense for the perception of X), Y (object), S2 (sense for perception of Y), and M (motor repertory that produces Y)—will specify the particular conscious percept at any given time. The proposed principle of interaction between the elements of a construct (X, Y, S1, S2, M) is universal and applies for all modes of communication (normal, deaf, blind, deaf and blind people) and for various language systems (Chinese, Italian, English, etc.). The particular arrangement of modalities of each of the three modules S1 (5 of 5), S2 (1 of 3), and M (3 of 3) defines a specific mode of communication. This multifaceted paradigm demonstrates a predetermined pattern of relationships between X, Y, and M that passes from generation to generation. The presented analysis of a cognitive experience encompasses the key elements of embodied cognition theories and unequivocally accords with the scientific interpretation of cognition as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses, and cognition means thinking and awareness. By assembling the novel ideas presented in twelve sections, we can reveal that in the invisible “chaos”, there is an order, a structure with landmarks and principles of operations and mental processes (thoughts) are physical and have a biological basis. This innovative proposal explains the phenomenon of mental imagery; give the first insight into the relationship between mental states and brain states, and support the notion that mind and body are inseparably connected. The findings of this theoretical proposal are supported by the current scientific data and are substantiated by the records of the evolution of language and human intelligence.Keywords: agent, awareness, cognitive, element, experience, feedback, first person, imagery, language, mental, motor, object, sensory, symbol, thought
Procedia PDF Downloads 3851536 Negativization: A Focus Strategy in Basà Language
Authors: Imoh Philip
Abstract:
Basà language is classified as belonging to Kainji family, under the sub-phylum Western-Kainji known as Rubasa (Basa Benue) (Croizier & Blench, 1992:32). Basà is an under-described language spoken in the North-Central Nigeria. The language is characterized by subject-verb-object (henceforth SVO) as its canonical word order. Data for this work is sourced from the researcher’s native intuition of the language corroborated with a careful observation of native speakers. This paper investigates the syntactic derivational strategy of information-structure encoding in Basà language. It emphasizes on a negative operator, as a strategy for focusing a constituent or clause that follows it and negativizes a whole proposition. For items that are not nouns, they have to undergo an obligatory nominalization process, either by affixation, modification or conversion before they are moved to the pre verbal position for these operations. The study discovers and provides evidence of the fact showing that deferent constituents in the sentence such as the subject, direct, indirect object, genitive, verb phrase, prepositional phrase, clause and idiophone, etc. can be focused with the same negativizing operator. The process is characterized by focusing the pre verbal NP constituent alone, whereas the whole proposition is negated. The study can stimulate similar study or be replicated in other languages.Keywords: negation, focus, Basà, nominalization
Procedia PDF Downloads 5961535 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis
Procedia PDF Downloads 3421534 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2511533 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1611532 An Analysis of Uncoupled Designs in Chicken Egg
Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi
Abstract:
Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.Keywords: uncoupled design, axiomatic design, nature design, design evaluation
Procedia PDF Downloads 1731531 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 2751530 The Mapping of Pastoral Area as a Basis of Ecological for Beef Cattle in Pinrang Regency, South Sulawesi, Indonesia
Authors: Jasmal A. Syamsu, Muhammad Yusuf, Hikmah M. Ali, Mawardi A. Asja, Zulkharnaim
Abstract:
This study was conducted and aimed in identifying and mapping the pasture as an ecological base of beef cattle. A survey was carried out during a period of April to June 2016, in Suppa, Mattirobulu, the district of Pinrang, South Sulawesi province. The mapping process of grazing area was conducted in several stages; inputting and tracking of data points into Google Earth Pro (version 7.1.4.1529), affirmation and confirmation of tracking line visualized by satellite with a variety of records at the point, a certain point and tracking input data into ArcMap Application (ArcGIS version 10.1), data processing DEM/SRTM (S04E119) with respect to the location of the grazing areas, creation of a contour map (a distance of 5 m) and mapping tilt (slope) of land and land cover map-making. Analysis of land cover, particularly the state of the vegetation was done through the identification procedure NDVI (Normalized Differences Vegetation Index). This procedure was performed by making use of the Landsat-8. The results showed that the topography of the grazing areas of hills and some sloping surfaces and flat with elevation vary from 74 to 145 above sea level (asl), while the requirements for growing superior grass and legume is an altitude of up to 143-159 asl. Slope varied between 0 - > 40% and was dominated by a slope of 0-15%, according to the slope/topography pasture maximum of 15%. The range of NDVI values for pasture image analysis results was between 0.1 and 0.27. Characteristics of vegetation cover of pasture land in the category of vegetation density were low, 70% of the land was the land for cattle grazing, while the remaining approximately 30% was a grove and forest included plant water where the place for shelter of the cattle during the heat and drinking water supply. There are seven types of graminae and 5 types of legume that was dominant in the region. Proportionally, graminae class dominated up 75.6% and legume crops up to 22.1% and the remaining 2.3% was another plant trees that grow in the region. The dominant weed species in the region were Cromolaenaodorata and Lantana camara, besides that there were 6 types of floor plant that did not include as forage fodder.Keywords: pastoral, ecology, mapping, beef cattle
Procedia PDF Downloads 3531529 Blockchain Technology for Secure and Transparent Oil and Gas Supply Chain Management
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry, characterized by its complex and global supply chains, faces significant challenges in ensuring security, transparency, and efficiency. Blockchain technology, with its decentralized and immutable ledger, offers a transformative solution to these issues. This paper explores the application of blockchain technology in the oil and gas supply chain, highlighting its potential to enhance data security, improve transparency, and streamline operations. By leveraging smart contracts, blockchain can automate and secure transactions, reducing the risk of fraud and errors. Additionally, the integration of blockchain with IoT devices enables real-time tracking and monitoring of assets, ensuring data accuracy and integrity throughout the supply chain. Case studies and pilot projects within the industry demonstrate the practical benefits and challenges of implementing blockchain solutions. The findings suggest that blockchain technology can significantly improve trust and collaboration among supply chain participants, ultimately leading to more efficient and resilient operations. This study provides valuable insights for industry stakeholders considering the adoption of blockchain technology to address their supply chain management challenges.Keywords: blockchain technology, oil and gas supply chain, data security, transparency, smart contracts, IoT integration, real-time tracking, asset monitoring, fraud reduction, supply chain efficiency, data integrity, case studies, industry implementation, trust, collaboration.
Procedia PDF Downloads 371528 The Practical Application of Sensory Awareness in Developing Healthy Communication, Emotional Regulation, and Emotional Introspection
Authors: Node Smith
Abstract:
Developmental psychology has long focused on modeling consciousness, often neglecting practical application and clinical utility. This paper aims to bridge this gap by exploring the practical application of physical and sensory tracking and awareness in fostering essential skills for conscious development. Higher conscious development requires practical skills such as self-agency, the ability to hold multiple perspectives, and genuine altruism. These are not personality characteristics but areas of skillfulness that address many cultural deficiencies impacting our world. They are intertwined with individual as well as collective conscious development. Physical, sensory tracking and awareness are crucial for developing these skills and offer the added benefit of cultivating healthy communication, emotional regulation, and introspection. Unlike skills such as throwing a baseball, which can be developed through practice or innate ability, the ability to introspect, track physical sensations, and observe oneself objectively is essential for advancing consciousness. Lacking these skills leads to cultural and individual anxiety, helplessness, and a lack of agency, manifesting as blame-shifting and irresponsibility. The inability to hold multiple perspectives stifles altruism, as genuine consideration for a global community requires accepting other perspectives without conditions. Physical and sensory tracking enhances self-awareness by grounding individuals in their bodily experiences. This grounding is critical for emotional regulation, allowing individuals to identify and process emotions in real-time, preventing overwhelm and fostering balance. Techniques like mindfulness meditation and body scan exercises attune individuals to their physical sensations, providing insights into their emotional states. Sensory awareness also facilitates healthy communication by fostering empathy and active listening. When individuals are in tune with their physical sensations, they become more present in interactions, picking up on subtle cues and responding thoughtfully. This presence reduces misunderstandings and conflicts, promoting more effective communication. The ability to introspect and observe oneself objectively is key to emotional introspection. This skill allows individuals to reflect on their thoughts, feelings, and behaviors, identify patterns, recognize areas for growth, and make conscious choices aligned with their values and goals. In conclusion, physical and sensory tracking and awareness are vital for developing the skills necessary for higher consciousness development. By fostering self-agency, emotional regulation, and the ability to hold multiple perspectives, these practices contribute to healthier communication, deeper emotional introspection, and a more altruistic and connected global community. Integrating these practices into developmental psychology and therapeutic interventions holds significant promise for both individual and societal transformation.Keywords: conscious development, emotional introspection, emotional regulation, self-agency, stages of development
Procedia PDF Downloads 451527 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications
Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi
Abstract:
With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality
Procedia PDF Downloads 801526 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method
Authors: Wassana Naiyapo, Atichat Sangtong
Abstract:
The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.Keywords: classification tree method, test case, UML use case diagram, use case specification
Procedia PDF Downloads 162