Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12434

Search results for: multi variable decision making

11954 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 329
11953 Calling the Shots: How Others’ Mistakes May Influence Vaccine Take-up

Authors: Elizabeth Perry, Jylana Sheats

Abstract:

Scholars posit that there is an overlap between the fields of Behavioral Economics (BE) and Behavior Science (BSci)—and that consideration of concepts from both may facilitate a greater understanding of health decision-making processes. For example, the ‘intention-action gap’ is one BE concept to explain sup-optimal decision-making. It is described as having knowledge that does not translate into behavior. Complementary best BSci practices may provide insights into behavioral determinants and relevant behavior change techniques (BCT). Within the context of BSci, this exploratory study aimed to apply a BE concept with demonstrated effectiveness in financial decision-making to a health behavior: influenza (flu) vaccine uptake. Adults aged >18 years were recruited on Amazon’s Mechanical Turk, a digital labor market where anonymous users perform simple tasks at low cost. Eligible participants were randomized into 2 groups, reviewed a scenario, and then completed a survey on the likelihood of receiving a flu shot. The ‘usual care’ group’s scenario included standard CDC guidance that supported the behavior. The ‘intervention’ group’s scenario included messaging about people who did not receive the flu shot. The framing was such that participants could learn from others’ (strangers) mistakes and the subsequent health consequences: ‘Last year, other people who didn’t get the vaccine were about twice as likely to get the flu, and a number of them were hospitalized or even died. Don’t risk it.’ Descriptive statistics and chi-square analyses were performed on the sample. There were 648 participants (usual care, n=326; int., n=322). Among racial/ethnic minorities (n=169; 57% aged < 40), the intervention group was 22% more likely to report that they were ‘extremely’ or ‘moderately’ likely to get the flu vaccine (p = 0.11). While not statistically significant, findings suggest that framing messages from the perspective of learning from the mistakes of unknown others coupled with the BCT ‘knowledge about the health consequences’ may help influence flu vaccine uptake among the study population. With the widely documented disparities in vaccine uptake, exploration of the complementary application of these concepts and strategies may be critical.

Keywords: public health, decision-making, vaccination, behavioral science

Procedia PDF Downloads 46
11952 Independent Audit in Brazilian Companies Listed on B3: An Analysis of Companies That Received Qualified Opinion and Disclaimer of Opinion

Authors: Diego Saldo Alves, Marcelo Paveck Ayub

Abstract:

The quality of accounting information is very important for the decision-making of managers, investors government and other information users. The opinion of the independent audit has a significant influence on the decision-making, especially the investors. Therefore, the aim of this study is to analyze the reasons that companies listed on Brazilian Stock Exchange B3, if they received qualified opinion and disclaimer of opinion of the independent auditors. We analyzed the reports of the independent auditors of 23 Brazilian companies listed in B3 that received qualified opinion and disclaimer of opinion between the years 2012 and 2017. The findings show that the companies do not comply the International Financial Reporting Standard, IFRS, also they did not provide documentation to prove the operations performed, did not account expenses, problems in corporate governance and internal controls.

Keywords: audit, disclaimer of opinion, independent auditors, qualified opinion

Procedia PDF Downloads 195
11951 A Two Phase VNS Algorithm for the Combined Production Routing Problem

Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub

Abstract:

Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literature

Keywords: logistic, production, distribution, variable neighbourhood search

Procedia PDF Downloads 340
11950 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 520
11949 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making

Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson

Abstract:

Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.

Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty

Procedia PDF Downloads 130
11948 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images

Authors: Sung-Suk Oh, Bong-Keun Kang, Sang-Wook Park, Hui-Jin Joo, Jong-Ryul Choi, Seong-Jun Lee, Jeong-Woo Sohn

Abstract:

The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated.

Keywords: imaging phantom, MRI (Magnetic Resonance Imaging), PET / CT (Positron Emission Tomography / Computed Tomography), 3D printing

Procedia PDF Downloads 582
11947 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 273
11946 A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies

Authors: Saba Shams Bidhendi, Steven Goh, Andrew Wandel

Abstract:

The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author’s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers’ resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies.

Keywords: lean manufacturing, lean strategies, manufacturing wastes, manufacturing performance, optimisation, decision making

Procedia PDF Downloads 195
11945 A Project Screening System for Energy Enterprise Based on Dempster-Shafer Theory

Authors: Woosik Jang, Seung Heon Han, Seung Won Baek

Abstract:

Natural gas (NG) is an energy resource in a few countries, and most NG producers do business in politically unstable countries. In addition, as 90% of the LNG market is controlled by a small number of international oil companies (IOCs) and national oil companies (NOCs), entry of latecomers into the market is extremely limited. To meet these challenges, project viability needs to be assessed based on limited information from a project screening perspective. However, the early stages of the project have the following difficulties: (1) What are the factors to consider? (2) How many professionals do you need to decide? (3) How to make the best decision with limited information? To address this problem, this study proposes a model for evaluating LNG project viability based on the Dempster-Shafer theory (DST). A total of 11 indicators for analyzing the gas field, reflecting the characteristics of the LNG industry, and 23 indicators for analyzing the market environment, were identified. The proposed model also evaluates the LNG project based on the survey and provides uncertainty of the results based on DST as well as quantified results. Thus, the proposed model is expected to be able to support the decision-making process of the gas field project using quantitative results as a systematic framework, and it was developed as a stand-alone system to improve its usefulness in practice. Consequently, the amount of information and the mathematical approach are expected to improve the quality and opportunity of decision making for LNG projects for enterprises.

Keywords: project screen, energy enterprise, decision support system, Dempster-Shafer theory

Procedia PDF Downloads 345
11944 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands

Authors: Julio Albuja, David Zaldumbide

Abstract:

Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.

Keywords: algorithms, data, decision tree, transformation

Procedia PDF Downloads 377
11943 Factors Affecting the Critical Understanding of the Strategies Which Children Use to Motivate Parents in the Family Buying Process: Case of British Bangladeshi Children in the UK

Authors: Salma Akter, Mohammad M. Haque, Lawrence Akwetey

Abstract:

An empirical research design will analyze different factors/predictors children use to influence their parents in the family buying decision process in the unexplored area of British Bangladeshi children in the United Kingdom. The proposed conceptual model of factors- buying decision making process will be tested by the Structure Equation Model. A structured Questionnaire and secondary sources will employ to collect data and analyse and measure the validity by Statistical tools (SPSS) and Microsoft Excel. The Contemporary research aims to use the deductive approach developing the research questions and testing the hypothesis to identify the impact of different strategies British Bangladeshi children used to influence their parents in the family buying decision which was overlooked in the previous research.

Keywords: British Bangladeshi children, buying decision process, children influence, influential factors

Procedia PDF Downloads 271
11942 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation

Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes

Abstract:

The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.

Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization

Procedia PDF Downloads 316
11941 Optimization of Water Pipeline Routes Using a GIS-Based Multi-Criteria Decision Analysis and a Geometric Search Algorithm

Authors: Leon Mortari

Abstract:

The Metropolitan East region of Rio de Janeiro state, Brazil, faces a historic water scarcity. Among the alternatives studied to solve this situation, the possibility of adduction of the available water in the reservoir Lagoa de Juturnaíba to supply the region's municipalities stands out. The allocation of a linear engineering project must occur through an evaluation of different aspects, such as altitude, slope, proximity to roads, distance from watercourses, land use and occupation, and physical and chemical features of the soil. This work aims to apply a multi-criteria model that combines geoprocessing techniques, decision-making, and geometric search algorithm to optimize a hypothetical adductor system in the scenario of expanding the water supply system that serves this region, known as Imunana-Laranjal, using the Lagoa de Juturnaíba as the source. It is proposed in this study, the construction of a spatial database related to the presented evaluation criteria, treatment and rasterization of these data, and standardization and reclassification of this information in a Geographic Information System (GIS) platform. The methodology involves the integrated analysis of these criteria, using their relative importance defined by weighting them based on expert consultations and the Analytic Hierarchy Process (AHP) method. Three approaches are defined for weighting the criteria by AHP: the first treats all criteria as equally important, the second considers weighting based on a pairwise comparison matrix, and the third establishes a hierarchy based on the priority of the criteria. For each approach, a distinct group of weightings is defined. In the next step, map algebra tools are used to overlay the layers and generate cost surfaces, that indicates the resistance to the passage of the adductor route, using the three groups of weightings. The Dijkstra algorithm, a geometric search algorithm, is then applied to these cost surfaces to find an optimized path within the geographical space, aiming to minimize resources, time, investment, maintenance, and environmental and social impacts.

Keywords: geometric search algorithm, GIS, pipeline, route optimization, spatial multi-criteria analysis model

Procedia PDF Downloads 36
11940 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 129
11939 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration

Authors: Nooshin Salari, Viliam Makis

Abstract:

In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.

Keywords: reliability, maintenance optimization, semi-Markov decision process, production

Procedia PDF Downloads 167
11938 Decision Support System in Air Pollution Using Data Mining

Authors: E. Fathallahi Aghdam, V. Hosseini

Abstract:

Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.

Keywords: data mining, clustering, air pollution, crisp approach

Procedia PDF Downloads 429
11937 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 389
11936 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions

Authors: Djeffal Asma, Zemmouri Noureddine

Abstract:

In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.

Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts

Procedia PDF Downloads 548
11935 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods

Authors: J. Tamosaitiene

Abstract:

The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.

Keywords: risk, system, model, construction

Procedia PDF Downloads 171
11934 Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs

Authors: Arturo J. Anci Alméstar, Jose D. Fernandez Huapaya, David Mauricio

Abstract:

Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model.

Keywords: digital payment medium, decision tree, decision making, digital payments taxonomy

Procedia PDF Downloads 181
11933 Free Will and Compatibilism in Decision Theory: A Solution to Newcomb’s Paradox

Authors: Sally Heyeon Hwang

Abstract:

Within decision theory, there are normative principles that dictate how one should act in addition to empirical theories of actual behavior. As a normative guide to one’s actual behavior, evidential or causal decision-theoretic equations allow one to identify outcomes with maximal utility values. The choice that each person makes, however, will, of course, differ according to varying assignments of weight and probability values. Regarding these different choices, it remains a subject of considerable philosophical controversy whether individual subjects have the capacity to exercise free will with respect to the assignment of probabilities, or whether instead the assignment is in some way constrained. A version of this question is given a precise form in Richard Jeffrey’s assumption that free will is necessary for Newcomb’s paradox to count as a decision problem. This paper will argue, against Jeffrey, that decision theory does not require the assumption of libertarian freedom. One of the hallmarks of decision-making is its application across a wide variety of contexts; the implications of a background assumption of free will is similarly varied. One constant across the contexts of decision is that there are always at least two levels of choice for a given agent, depending on the degree of prior constraint. Within the context of Newcomb’s problem, when the predictor is attempting to guess the choice the agent will make, he or she is analyzing the determined aspects of the agent such as past characteristics, experiences, and knowledge. On the other hand, as David Lewis’ backtracking argument concerning the relationship between past and present events brings to light, there are similarly varied ways in which the past can actually be dependent on the present. One implication of this argument is that even in deterministic settings, an agent can have more free will than it may seem. This paper will thus argue against the view that a stable background assumption of free will or determinism in decision theory is necessary, arguing instead for a compatibilist decision theory yielding a novel treatment of Newcomb’s problem.

Keywords: decision theory, compatibilism, free will, Newcomb’s problem

Procedia PDF Downloads 322
11932 Deciding Graph Non-Hamiltonicity via a Closure Algorithm

Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell

Abstract:

We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.

Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science

Procedia PDF Downloads 374
11931 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 361
11930 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities

Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson

Abstract:

Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.

Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport

Procedia PDF Downloads 227
11929 European and Scandinavian Tourists' Perceptions and Desire to Travel in Ranong Province

Authors: Wipanee Maen-In

Abstract:

The objectives of the research are i) to study the motivations of european and scandinavian tourists who select Ranong province as their destinations ii) to study their perception towards the Ranong Province and iii) to study the visitors’ decision making while visiting Ranong Province. The samples of the study are 220 European and Scandinavian tourists’ visitors at the Ranong by accidental sampling and in clouding online questionnaires for 53 sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the motivation level of the visitors is considered prominent, the average score of the motivational factors ranks higher than the average of the pull factors to visit the Ranong province when considering the factors analysis, the research shows that the reason that most tourists visit the Ranong is for relaxation while the purity of the natural mineral hot springs is the most important pull factor.

Keywords: European and Scandinavian, Ranong province, tourists’ perceptions, visitors’ decision making

Procedia PDF Downloads 233
11928 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.

Keywords: machine learning, XGBoost, regression, decision making framework, system engineering

Procedia PDF Downloads 27
11927 Employee Assessment Systems in the Structures of Corporate Groups

Authors: D. Bąk-Grabowska, K. Grzesik, A. Iwanicka, A. Jagoda

Abstract:

The process of human resources management in the structures of corporate groups demonstrates certain specificity, resulting from the division of decision-making and executive competencies, which occurs within these structures between a parent company and its subsidiaries. The subprocess of employee assessment is considered crucial, since it provides information for the implementation of personnel function. The empirical studies conducted in corporate groups, within which at least one company is located in Poland, confirmed the critical significance of employee assessment systems in the process of human resources management in corporate groups. Parent companies, most often, retain their decision-making authority within the framework of the discussed process and introduce uniform employee assessment and personnel controlling systems to subsidiary companies. However, the instruments for employee assessment applied in corporate groups do not present such specificity.

Keywords: corporate groups, employee periodical assessment system, holding, human resources management

Procedia PDF Downloads 421
11926 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness

Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali

Abstract:

In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.

Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number

Procedia PDF Downloads 437
11925 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program

Authors: Carla Van De Sande, Jana Vandenberg

Abstract:

Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.

Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice

Procedia PDF Downloads 208