Search results for: modeling structural representations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8082

Search results for: modeling structural representations

7602 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China

Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan

Abstract:

The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.

Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure

Procedia PDF Downloads 474
7601 Media Representations of Gender-Intersectional Analysis of Impact/Influence on Collective Consciousness and Perceptions of Feminism, Gender, and Gender Equality: Evidence from Cultural/Media Sources in Nigeria

Authors: Olatawura O. Ladipo-Ajayi

Abstract:

The concept of gender equality is not new, nor are the efforts and movements toward achieving this concept. The idea of gender equality originates from the early feminist movements of the 1880s and its subsequent waves, all fighting to promote gender rights and equality focused on varying aspects and groups. Nonetheless, the progress and achievement of gender equality are not progressing at similar rates across the world and groups. This uneven progress is often due to varying social, cultural, political, and economic factors- some of which underpin intersectional identities and influence the perceptions of gender and associated gender roles that create gender inequality. In assessing perceptions of gender and assigned roles or expectations that cause inequalities, intersectionality provides a framework to interrogate how these perceptions are molded and reinforced to create marginalization. Intersectionality is increasingly becoming a lens and approach to understanding better inequalities and oppression, gender rights and equality, the challenges towards its achievement, and how best to move forward in the fight for gender rights, inclusion, and equality. In light of this, this paper looks at intersectional representations of gender in the media within cultural/social contexts -particularly entertainment media- and how this influences perceptions of gender and impacts progress toward achieving gender equality and advocacy. Furthermore, the paper explores how various identities and, to an extent, personal experiences play a role in the perceptions of and representations of gender, as well as influence the development of policies that promote gender equality in general. Finally, the paper applies qualitative and auto-ethnographic research methods building on intersectional and social construction frameworks to analyze gender representation in media using a literature review of scholarly works, news items, and cultural/social sources like Nigerian movies. It concludes that media influences ideas and perceptions of gender, gender equality, and rights; there isn’t enough being done in the media in the global south in general to challenge the hegemonic patriarchal and binary concepts of gender. As such, the growth of feminism and the attainment of gender equality is slow, and the concepts are often misunderstood. There is a need to leverage media outlets to influence perceptions and start informed conversations on gender equality and feminism; build collective consciousness locally to improve advocacy for equal gender rights. Changing the gender narrative in everyday media, including entertainment media, is one way to influence public perceptions of gender, promote the concept of gender equality, and advocate for policies that support equality.

Keywords: gender equality, gender roles/socialization, intersectionality, representation of gender in media

Procedia PDF Downloads 105
7600 The Policia Internacional e de Defesa do Estado 1933–1969 and Valtiollinen Poliisi 1939–1948 on Screen: Comparing and Contrasting the Images of the Political Police in Portuguese and Finnish Films between the 1930s and the 1960s

Authors: Riikka Elina Kallio

Abstract:

“The walls have ears” phrase is defining the era of dictatorship in Portugal (1926–1974) and political unrest decades in Finland (1917–1948). The phrase is referring to the policing of the political, secret police, PIDE (Policia Internacional e de Defesa do Estado 1933–1969) in Portugal and VALPO (Valtiollinen Poliisi 1939–1948) in Finland. Free speech at any public space and even in private events could be fatal. The members of the PIDE/VALPO or informers/collaborators could be listening. Strict censorship under the Salazar´s regime was controlling media for example newspapers, music, and the film industry. Similarly, the politically affected censorship influenced the media in Finland in those unrest decades. This article examines the similarities and the differences in the images of the political police in Finland and Portugal, by analyzing Finnish and Portuguese films from the nineteen-thirties to nineteensixties. The text addresses two main research questions: what are the common and different features in the representations of the Finnish and Portuguese political police in films between the 1930s and 1960s, and how did the national censorship affect these representations? This study approach is interdisciplinary, and it combines film studies and criminology. Close reading is a practical qualitative method for analyzing films and in this study, close reading emphasizes the features of the police officer. Criminology provides the methodological tools for analysis of the police universal features and European common policies. The characterization of the police in this study is based on Robert Reiner´s 1980s and Timo Korander´s 2010s definitions of the police officer. The research material consisted of the Portuguese films from online film archives and Finnish films from Movie Making Finland -project´s metadata which offered suitable material by data mining the keywords such as poliisi, poliisipäällikkö and konstaapeli (police, police chief, police constable). The findings of this study suggest that even though there are common features of the images of the political police in Finland and Portugal, there are still national and cultural differences in the representations of the political police and policing.

Keywords: censorship, film studies, images, PIDE, political police, VALPO

Procedia PDF Downloads 71
7599 Kirchhoff’s Depth Migration over Heterogeneous Velocity Models with Ray Tracing Modeling Approach

Authors: Alok Kumar Routa, Priya Ranjan Mohanty

Abstract:

Complex seismic signatures are generated due to the complexity of the subsurface which is difficult to interpret. In the present study, an attempt has been made to model the complex subsurface using the Ray tracing modeling technique. Add to this, for the imaging of these geological features, Kirchhoff’s prestack depth migration is applied over the synthetic common shot gather dataset. It is found that the Kirchhoff’s migration technique in addition with the Ray tracing modeling concept has the flexibility towards the imaging of various complex geology which gives satisfactory results with proper delineation of the reflectors at their respective true depth position. The entire work has been carried out under the MATLAB environment.

Keywords: Kirchhoff's migration, Prestack depth migration, Ray tracing modelling, velocity model

Procedia PDF Downloads 365
7598 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 228
7597 When Sex Matters: A Comparative Generalized Structural Equation Model (GSEM) for the Determinants of Stunting Amongst Under-fives in Uganda

Authors: Vallence Ngabo M., Leonard Atuhaire, Peter Clever Rutayisire

Abstract:

The main aim of this study was to establish the differences in both the determinants of stunting and the causal mechanism through which the identified determinants influence stunting amongst male and female under-fives in Uganda. Literature shows that male children below the age of five years are at a higher risk of being stunted than their female counterparts. Specifically, studies in Uganda indicate that being a male child is positively associated with stunting, while being a female is negatively associated with stunting. Data for 904 males and 829 females under-fives was extracted form UDHS-2016 survey dataset. Key variables for this study were identified and used in generating relevant models and paths. Structural equation modeling techniques were used in their generalized form (GSEM). The generalized nature necessitated specifying both the family and link functions for each response variable in the system of the model. The sex of the child (b4) was used as a grouping factor and the height for age (HAZ) scores were used to construct the status for stunting of under-fives. The estimated models and path clearly indicated that the set of underlying factors that influence male and female under-fives respectively was different and the path through which they influence stunting was different. However, some of the determinants that influenced stunting amongst male under-fives also influenced stunting amongst the female under-fives. To reduce the stunting problem to the desirable state, it is important to consider the multifaceted and complex nature of the risk factors that influence stunting amongst the under-fives but, more importantly, consider the different sex-specific factors and their causal mechanism or paths through which they influence stunting.

Keywords: stunting, underfives, sex of the child, GSEM, causal mechanism

Procedia PDF Downloads 140
7596 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT

Procedia PDF Downloads 239
7595 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys

Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.

Abstract:

We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.

Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion

Procedia PDF Downloads 485
7594 A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention

Authors: Ya-Fen Lee, Yun-Yao Chi

Abstract:

The study aims to explore the relationship between risk perceptions of rockfall and revisit intention using a Structural Equation Modelling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travellers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pay, obstruction and attraction. The risk perception has an indirect effect on revisit intention through influencing willingness-to-pay. The study results can be a reference for mitigation the rockfall disaster.

Keywords: risk perception, rockfall, revisit intention, structural equation modelling

Procedia PDF Downloads 435
7593 Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures

Authors: M. Shannag, A. Charif, S. Naser, F. Faisal, A. Karim

Abstract:

Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.

Keywords: lightweight concrete, scoria, stress, strain, silica fume, fly ash

Procedia PDF Downloads 511
7592 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling

Procedia PDF Downloads 341
7591 Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future

Authors: Gabriel Wainer

Abstract:

Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.

Keywords: modeling and simulation, discrete-event simulation, hybrid systems modeling, parallel and distributed simulation

Procedia PDF Downloads 323
7590 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs

Procedia PDF Downloads 258
7589 The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 372
7588 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 222
7587 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 158
7586 Measuring Entrepreneurship Intentions among Nigerian University Graduates: A Structural Equation Modeling Technique

Authors: Eunice Oluwakemi Chukwuma-Nwuba

Abstract:

Nigeria is a developing country with an increasing rate of graduate unemployment. This has triggered successive government administrations to promote the variety of programmes to address the situation. However, none of these efforts yielded the desired outcome. Accordingly, in 2006 the government included entrepreneurship module in the curriculum of universities as a compulsory general programme for all undergraduate courses. This is in the hope that the programme will help to promote entrepreneurial mind-set and new venture creation among graduates and as a result reduce the rate of graduate unemployment. The study explores the effectiveness of entrepreneurship education in promoting entrepreneurship. This study is significant in view of the endemic graduate unemployment in Nigeria and the social consequences such as youth restiveness and militancy. It is guided by the theory of planned behaviour. It employed the two-stage structural equation modelling (AMOS) to model entrepreneurial intentions as a function of innovative teaching methods, traditional teaching methods and culture Personal attitude and subjective norm are proposed to mediate the relationships between the exogenous and the endogenous variables. The first stage was tested using multi-group confirmatory factor analysis (MGCFA) framework to confirm that the two groups assign the same meaning to the scale items and to obtain goodness-of-fit indices. The multi-group confirmatory factor analysis included the tests of configural, metric and scalar invariance. With the attainment of full configural invariance and partial metric and scalar invariance, the second stage – the structural model was applied hypothesising that, the entrepreneurial intentions of graduates (respondents who have participated in the compulsory entrepreneurship programme) will be higher than those of undergraduates (respondents who are yet to participate in the programme). The study uses the quasi-experimental design. The samples comprised 409 graduates (experimental group) and 402 undergraduates (control group) from six federal universities in Nigeria. Our findings suggest that personal attitude is positively related with entrepreneurial intentions, largely confirming prior literature. However, unlike previous studies, our results indicate that subjective norm has significant direct and indirect impact on entrepreneurial intentions indicating that reference people of the participants have important roles to play in their decision to be entrepreneurial. Furthermore, unlike the assertions in prior studies, the result suggests that traditional teaching methods have indirect effect on entrepreneurial intentions supporting that since personal characteristics can change in an educational situation, an education purposively directed at entrepreneurship might achieve similar results if not better. This study has implication for practice and theory. The research extends to the theoretical understanding of the formation of entrepreneurial intentions and explains the role of the reference others in relation to how graduates perceive entrepreneurship. Further, the study adds to the body of knowledge on entrepreneurship education in Nigeria universities and provides a developing country perspective. It proposes further research in the exploration of entrepreneurship education and entrepreneurial intentions of graduates from across the country’s universities as necessary and imperative.

Keywords: entrepreneurship education, entrepreneurial intention, structural equation modeling, theory of planned behaviour

Procedia PDF Downloads 259
7585 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device

Authors: Xin Shi, Wei Tan, Guorui Zhu

Abstract:

The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.

Keywords: microfluidic, inertial focusing, particle separation, Dean flow

Procedia PDF Downloads 79
7584 Climate Change Awareness at the Micro Level: Case Study of Grande Riviere, Trinidad

Authors: Sherry Ann Ganase, Sandra Sookram

Abstract:

This study investigates the level of awareness to climate change and major factors that influence such awareness in Grande Riviere, Trinidad. Through the development of an Awareness Index and application of a Structural Equation Model to survey data, the findings suggest an Awareness index value of 0.459 in Grande Riviere. These results suggest that households have climate smart attitudes and behaviors but climate knowledge is lacking. This is supported by the structural equation model which shows a negative relationship between awareness and causes of climate change. The study concludes by highlighting the need for immediate action on increasing knowledge.

Keywords: awareness, climate change, climate education, index structural equation model

Procedia PDF Downloads 466
7583 A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings

Authors: P. Abtahi, B. Samali

Abstract:

Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system.

Keywords: building performance, earthquake engineering, glazing system, movable façade technology

Procedia PDF Downloads 548
7582 Human Behavior Modeling in Video Surveillance of Conference Halls

Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini

Abstract:

In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.

Keywords: activity modeling, clustering, PLSA, video representation

Procedia PDF Downloads 394
7581 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling modes and hysteretic behaviors were found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation, and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

Keywords: slit circular shear panel damper, hysteresis characteristics, slip length-to-width ratio, D/t ratio, FE analysis

Procedia PDF Downloads 400
7580 Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling

Authors: Yamileth P. Herrera, Ronald R. Gutierrez, Carlos, Pacheco-Bustos

Abstract:

This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs.

Keywords: contact tank, numerical models, hydrodynamic modeling, residence time

Procedia PDF Downloads 168
7579 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model

Procedia PDF Downloads 321
7578 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels

Authors: Naresh Reddy Kolanu

Abstract:

The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.

Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model

Procedia PDF Downloads 42
7577 Modeling of Historical Lime Masonry Structure in Abaqus

Authors: Ram Narayan Khare, Adhyatma Khare, Aradhna Shrivastava

Abstract:

In this study, numerical modeling of ‘Lime Surkhi’ masonry building has been carried out for a prototype ancient building situated at seismic zone III using the Finite Element Method by Abaqus software. The model is designed in order to get the failure envelope and then decide the best method of retrofitting the structure so that the structure is made to withstand more decades, given its historical background. Previously, due to a lack of technologies, it was difficult to determine the mode of failure. Present technological development can predict the mode of failure, and subsequently, the structure can be refabricated accordingly. The study makes an important addition to the understanding of retrofitting ancient and old buildings based on the results of FEM modeling.

Keywords: seismic retrofitting, Abaqus, FEM, historic building, Lime Surkhi masonry

Procedia PDF Downloads 31
7576 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 520
7575 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 226
7574 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 168
7573 Reading Comprehension in Profound Deaf Readers

Authors: S. Raghibdoust, E. Kamari

Abstract:

Research show that reduced functional hearing has a detrimental influence on the ability of an individual to establish proper phonological representations of words, since the phonological representations are claimed to mediate the conceptual processing of written words. Word processing efficiency is expected to decrease with a decrease in functional hearing. In other words, it is predicted that hearing individuals would be more capable of word processing than individuals with hearing loss, as their functional hearing works normally. Studies also demonstrate that the quality of the functional hearing affects reading comprehension via its effect on their word processing skills. In other words, better hearing facilitates the development of phonological knowledge, and can promote enhanced strategies for the recognition of written words, which in turn positively affect higher-order processes underlying reading comprehension. The aims of this study were to investigate and compare the effect of deafness on the participants’ abilities to process written words at the lexical and sentence levels through using two online and one offline reading comprehension tests. The performance of a group of 8 deaf male students (ages 8-12) was compared with that of a control group of normal hearing male students. All the participants had normal IQ and visual status, and came from an average socioeconomic background. None were diagnosed with a particular learning or motor disability. The language spoken in the homes of all participants was Persian. Two tests of word processing were developed and presented to the participants using OpenSesame software, in order to measure the speed and accuracy of their performance at the two perceptual and conceptual levels. In the third offline test of reading comprehension which comprised of semantically plausible and semantically implausible subject relative clauses, the participants had to select the correct answer out of two choices. The data derived from the statistical analysis using SPSS software indicated that hearing and deaf participants had a similar word processing performance both in terms of speed and accuracy of their responses. The results also showed that there was no significant difference between the performance of the deaf and hearing participants in comprehending semantically plausible sentences (p > 0/05). However, a significant difference between the performances of the two groups was observed with respect to their comprehension of semantically implausible sentences (p < 0/05). In sum, the findings revealed that the seriously impoverished sentence reading ability characterizing the profound deaf subjects of the present research, exhibited their reliance on reading strategies that are based on insufficient or deviant structural knowledge, in particular in processing semantically implausible sentences, rather than a failure to efficiently process written words at the lexical level. This conclusion, of course, does not mean to say that deaf individuals may never experience deficits at the word processing level, deficits that impede their understanding of written texts. However, as stated in previous researches, it sounds reasonable to assume that the more deaf individuals get familiar with written words, the better they can recognize them, despite having a profound phonological weakness.

Keywords: deafness, reading comprehension, reading strategy, word processing, subject and object relative sentences

Procedia PDF Downloads 338