Search results for: manual attendance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 880

Search results for: manual attendance

400 Using a Mobile App to Foster Children Active Travel to School in Spain

Authors: P. Pérez-Martín, G. Pedrós, P. Martínez-Jiménez, M. Varo-Martínez

Abstract:

In recent decades, family habits related to children’s displacements to school have changed, increasing motorized travels against active modes. This entails a major negative impact on the urban environment, road safety in cities and the physical and psychological development of children. One of the more common actions used to reverse this trend is Walking School Bus (WSB), which consists of a predefined adult-scorted pedestrian route to school with several stops along the path where schoolchildren are collected. At Tirso de Molina School in Cordoba (Spain), a new ICT-based methodology to deploy WSB has been tested. A mobile app that allows the geoposition of the group, the notification of the arrival and real-time communication between the WSB participants have been presented to the families in order to organize and register the daily participation. After an initial survey to know the travel mode and the spatial distribution of the interested families, three WSB routes have been established and the families have been trained in the app usage. During nine weeks, 33 children have joined the WSB and their parents have accompanied the groups in turns. A high recurrence in the attendance has been registered. Through a final survey, participants have valued highly the tool and the methodology designed, emphasizing as most useful features of the mobile app: notifications system, chat and real-time monitoring. It has also been found that the tool has had a major impact on the degree of confidence of parents regarding the autonomous on foot displacement of their children to school. Moreover, 37,9% of the participant families have reported a total or partial modal shift from car to walking, and the benefits more reported are an increment of the parents available time and less problems in the travel to school daily organization. As a consequence, It has been proved the effectiveness of this user-centric innovative ICT-based methodology to reduce the levels of private car drop offs, minimize barriers of time constraints, volunteer recruitment, and parents’ safety concerns, while, at the same time, increase convenience and time savings for families. This pilot study can offer guidance for community coordinated actions and local authority interventions to support sustainable school travel outcomes.

Keywords: active travel, mobile app, sustainable mobility, urban transportation planning, walking school bus

Procedia PDF Downloads 336
399 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 313
398 Estimation and Comparison of Delay at Signalized Intersections Based on Existing Methods

Authors: Arpita Saha, Satish Chandra, Indrajit Ghosh

Abstract:

Delay implicates the time loss of a traveler while crossing an intersection. Efficiency of traffic operation at signalized intersections is assessed in terms of delay caused to an individual vehicle. Highway Capacity Manual (HCM) method and Webster’s method are the most widely used in India for delay estimation purpose. However, in India, traffic is highly heterogeneous in nature with extremely poor lane discipline. Therefore, to explore best delay estimation technique for Indian condition, a comparison was made. In this study, seven signalized intersections from three different cities where chosen. Data was collected for both during morning and evening peak hours. Only under saturated cycles were considered for this study. Delay was estimated based on the field data. With the help of Simpson’s 1/3 rd rule, delay of under saturated cycles was estimated by measuring the area under the curve of queue length and cycle time. Moreover, the field observed delay was compared with the delay estimated using HCM, Webster, Probabilistic, Taylor’s expansion and Regression methods. The drawbacks of the existing delay estimation methods to be use in Indian heterogeneous traffic conditions were figured out, and best method was proposed. It was observed that direct estimation of delay using field measured data is more accurate than existing conventional and modified methods.

Keywords: delay estimation technique, field delay, heterogeneous traffic, signalised intersection

Procedia PDF Downloads 300
397 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions

Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars

Abstract:

Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.

Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions

Procedia PDF Downloads 234
396 Segmentation of the Liver and Spleen From Abdominal CT Images Using Watershed Approach

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

The phase of segmentation is an important step in the processing and interpretation of medical images. In this paper, we focus on the segmentation of liver and spleen from the abdomen computed tomography (CT) images. The importance of our study comes from the fact that the segmentation of ROI from CT images is usually a difficult task. This difficulty is the gray’s level of which is similar to the other organ also the ROI are connected to the ribs, heart, kidneys, etc. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to remove the surrounding and connected organs and tissues by applying morphological filters. This first step makes the extraction of interest regions easier. The second step consists of improving the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce these deficiencies by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts.

Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm

Procedia PDF Downloads 495
395 Nurses' View on Costing Nursing Care: A Case Study of Two Selected Public Hospitals in Ibadan, Oyo State, Nigeria

Authors: Funmilayo Abiola Opadoja, Samuel Olukayode Awotona

Abstract:

Nursing services costing has been a major interest to nurses for a long period of time. Determination of nursing costing is germane in order to show the effectiveness of nursing practice in an improved and affordable health care delivery system. This has been a major concern of managers that have the mind of quality and affordable health services. The treatment or intervention should be considered as ‘product’ of nursing care and should provide an explainable term for billing. The study was non-experimental, descriptive and went about eliciting the views of nurses on costing nursing care at two public hospitals namely: University College Hospital and Adeoyo Maternity Teaching Hospital. The questionnaire was the instrument used in eliciting nurse’s response. It was administered randomly on 300 selected respondents across various wards within the hospitals. The data was collected and analysed using SPSS20.0 to generate frequency, and cross-tabulations to explore the statistical relationship between variables. The result shows that 89.2% of the respondents viewed costing of nursing care as an important issued to be looked into. The study concluded that nursing care costing is germane to enhancing the status and imagery of the nurses, it is essential because it would enhance the performance of nurses in discharging their duties. There is need to have a procedural manual agreed on by nursing practitioner on costing of each care given.

Keywords: costing, health care delivery system, intervention, nursing care, practitioner

Procedia PDF Downloads 333
394 The Millennium Development Goals and Algerian Economic Policy: Some Evidences

Authors: Abdelkader Guendouz, Fatima Zohra Adel

Abstract:

Even if both the economic and the human development are an axial pillar in its global policy, Algerian government seems to be more and more engaged in the international context aiming to reach of the so called millennium development goals, and this since its beginning. By looking closely at the Algerian economic policy, it is easy to mention the existence of several programs in which both economic and social realisations including among others, poverty reduction, enhancement of education level and conditions, woman statute and gender equity amelioration targets. The efforts of Algerian government in the field of these targets had been acheminated through three main plans, which are: -PSRE (Plan de Soutien à la Relance Economique), for the period of 2001 to 2004, initiated with about 7 billion US dollar, had been focused on three objectives, namely, poverty reduction, job creation and regional equilibrium with rural areas revitalization. -PCSC (le Programme complémentaire de soutien à la croissance économique), for the period of 2005 to 2009, with a starting funding of 114 billion US dollar. This program aims to develop public services and supporting public investments, especially in which concerns social infrastructures. Now, and at the end of the maturity of the MDGs agenda, an important question is to be asked: what are the main realizations regarding these MDGs? In order to answer this question, the present paper tries to examine the Algerian economic policy (but also the social one) by considering the MDGs challenges, for the period from 2000 to 2010, but also until 2015. This examination is focused on three main targets, namely poverty, education, and health. Firstly, statistical assessment for the Algerian economic and social situation shows that almost all MDGs had been reached during the period of 2000 to 2009 and it continues to maintain and improve them. This observation can be endorsed by invoking some achievements. Starting by the reduction of poverty, the proportion of population living with less than 1 US dollar per a day passed from 8.0 % in 2000 to 0.5 % in 2009, and 0.3 % in 2015. For education sphere, the enrolment ratio of six-year child, which is the most significant index for school attendance, is about 98 % for 2009 against 93 % in 1999, and only 43 % in 1966. Concluding with health care and relevant services; the Algerian government has accomplished big steps in providing easy access to this sector for the population. Moreover, the percentage of assisted accouchement had been raised from 91.2 % in 2000 to 97.2 % in 2009.

Keywords: Algerian economic policy, MDGs, poverty, education, health

Procedia PDF Downloads 259
393 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 138
392 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment

Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha

Abstract:

When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.

Keywords: contract risk assessment, NLP, transfer learning, question answering

Procedia PDF Downloads 129
391 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 212
390 Library Support for the Intellectually Disabled: Book Clubs and Universal Design

Authors: Matthew Conner, Leah Plocharczyk

Abstract:

This study examines the role of academic libraries in support of the intellectually disabled (ID) in post-secondary education. With the growing public awareness of the ID, there has been recognition of their need for post-secondary educational opportunities. This was an unforeseen result for a population that has been associated with elementary levels of education, yet the reasons are compelling. After aging out of the school system, the ID need and deserve educational and social support as much as anyone. Moreover, the commitment to diversity in higher education rings hollow if this group is excluded. Yet, challenges remain to integrating the ID into a college curriculum. This presentation focuses on the role of academic libraries. Neglecting this vital resource for the support of the ID is not to be thought of, yet the library’s contribution is not clear. Library collections presume reading ability and libraries already struggle to meet their traditional goals with the resources available. This presentation examines how academic libraries can support post-secondary ID. For context, the presentation first examines the state of post-secondary education for the ID with an analysis of data on the United States compiled by the ThinkCollege! Project. Geographic Information Systems (GIS) and statistical analysis will show regional and methodological trends in post-secondary support of the ID which currently lack any significant involvement by college libraries. Then, the presentation analyzes a case study of a book club at the Florida Atlantic University (FAU) libraries which has run for several years. Issues such as the selection of books, effective pedagogies, and evaluation procedures will be examined. The study has found that the instruction pedagogies used by libraries can be extended through concepts of Universal Learning Design (ULD) to effectively engage the ID. In particular, student-centered, participatory methodologies that accommodate different learning styles have proven to be especially useful. The choice of text is complex and determined not only by reading ability but familiarity of subject and features of the ID’s developmental trajectory. The selection of text is not only a necessity but also promises to give insight into the ID. Assessment remains a complex and unresolved subject, but the voluntary, sustained, and enthusiastic attendance of the ID is an undeniable indicator. The study finds that, through the traditional library vehicle of the book club, academic libraries can support ID students through training in both reading and socialization, two major goals of their post-secondary education.

Keywords: academic libraries, intellectual disability, literacy, post-secondary education

Procedia PDF Downloads 163
389 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents

Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed

Abstract:

Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives. 

Keywords: automated external defibrillator, medical emergency, response time, unmanned aerial system

Procedia PDF Downloads 228
388 Review of Assessment of Integrated Information System (IIS) in Organisation

Authors: Mariya Salihu Ingawa, Sani Suleiman Isah

Abstract:

The assessment of Integrated Information System (IIS) in organisation is an important initiative to enable the Information System (IS) managers, as well as top management to understand the success status of their investment in IS integration efforts. However, without a proper assessment, an organisation will not know its IIS status, which may affect their judgment on what action should be taken onwards. Current research on IIS assessment is lacking and those related literature on IIS assessment focus more on assessing the technical aspect of IIS. It is argued that assessing technical aspect alone is inadequate since organisational and strategic aspects in IIS should also be considered. Current methods, techniques and tools used by vendors for IIS assessment also are lack of comprehensive measures to fully assess the Integrated Information System in term of technical, organisational and strategic domains. The purpose of this study is to establish critical success factors for measuring success of an Integrated Information System. These factors are used as the basis for constructing an approach to comprehensively assess IIS in an organisation. A comprehensive list of success factors for IIS assessment, established from literature, was initially presented. An expert surveys using both manual and online methods were conducted to verify the factors. Based on the factors, an instrument for IIS assessment was constructed. The results from a case study indicate that through comprehensive assessment approach, not only the level of success been known, but also reveals the contributing factors. This research contributes to the field of Information Systems specifically in the area of Integrated Information System assessment.

Keywords: integrated information system, expert surveys, organisation, assessment

Procedia PDF Downloads 388
387 Glycan Analyzer: Software to Annotate Glycan Structures from Exoglycosidase Experiments

Authors: Ian Walsh, Terry Nguyen-Khuong, Christopher H. Taron, Pauline M. Rudd

Abstract:

Glycoproteins and their covalently bonded glycans play critical roles in the immune system, cell communication, disease and disease prognosis. Ultra performance liquid chromatography (UPLC) coupled with mass spectrometry is conventionally used to qualitatively and quantitatively characterise glycan structures in a given sample. Exoglycosidases are enzymes that catalyze sequential removal of monosaccharides from the non-reducing end of glycans. They naturally have specificity for a particular type of sugar, its stereochemistry (α or β anomer) and its position of attachment to an adjacent sugar on the glycan. Thus, monitoring the peak movements (both in the UPLC and MS1) after application of exoglycosidases provides a unique and effective way to annotate sugars with high detail - i.e. differentiating positional and linkage isomers. Manual annotation of an exoglycosidase experiment is difficult and time consuming. As such, with increasing sample complexity and the number of exoglycosidases, the analysis could result in manually interpreting hundreds of peak movements. Recently, we have implemented pattern recognition software for automated interpretation of UPLC-MS1 exoglycosidase digestions. In this work, we explain the software, indicate how much time it will save and provide example usage showing the annotation of positional and linkage isomers in Immunoglobulin G, apolipoprotein J, and simple glycan standards.

Keywords: bioinformatics, automated glycan assignment, liquid chromatography, mass spectrometry

Procedia PDF Downloads 200
386 Restoration of Digital Design Using Row and Column Major Parsing Technique from the Old/Used Jacquard Punched Cards

Authors: R. Kumaravelu, S. Poornima, Sunil Kumar Kashyap

Abstract:

The optimized and digitalized restoration of the information from the old and used manual jacquard punched card in textile industry is referred to as Jacquard Punch Card (JPC) reader. In this paper, we present a novel design and development of photo electronics based system for reading old and used punched cards and storing its binary information for transforming them into an effective image file format. In our textile industry the jacquard punched cards holes diameters having the sizes of 3mm, 5mm and 5.5mm pitch. Before the adaptation of computing systems in the field of textile industry those punched cards were prepared manually without digital design source, but those punched cards are having rich woven designs. Now, the idea is to retrieve binary information from the jacquard punched cards and store them in digital (Non-Graphics) format before processing it. After processing the digital format (Non-Graphics) it is converted into an effective image file format through either by Row major or Column major parsing technique.To accomplish these activities, an embedded system based device and software integration is developed. As part of the test and trial activity the device was tested and installed for industrial service at Weavers Service Centre, Kanchipuram, Tamilnadu in India.

Keywords: file system, SPI. UART, ARM controller, jacquard, punched card, photo LED, photo diode

Procedia PDF Downloads 167
385 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 57
384 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt

Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer

Abstract:

Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.

Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening

Procedia PDF Downloads 52
383 Application of Distributed Value Property Zones Approach on the Hydraulic Conductivity for Real Site Located in Al-Najaf Region, Iraq to Investigate the Groundwater Resources

Authors: Hayder H. Kareem, Ayad K. Hussein, Aseel A. Alkatib

Abstract:

Groundwater accumulated at geological formations constitutes a worldwide vital water resource component which can be used to supply agriculture, industry, and domestic uses. The subsurface environment is affected by human activities; consequently, planning and sustainable management of aquifers require serious attention, especially as the world is exposed to the problem of global warming. Establishing accurate and efficient groundwater models will provide confident results for the behavior of the aquifer's system. The new approach, 'Distributed Value Property Zones,' available in Visual MODFLOW, is used to reconstruct the subsurface zones of the Al-Najaf region aquifer, and then its effect is compared with those manual and automated (PEST) approaches. Results show that the model has become more accurate with the use of the new approach, as the calibration and results analyses revealed. The assessment of the Al-Najaf region groundwater aquifer has revealed a degree of insufficiency of the required pumping demand, which reflects dry areas in both of the aquifer's layers. In addition, with pumping, the Euphrates River loses water of 7458 m³/day to the aquifer, while without pumping, it gains 28837 m³/day from the rainfall's recharge. The distributed value property zones approach achieves a precise groundwater model to assess the state of the Al-Najaf region aquifer.

Keywords: Al-Najaf region, distributed value property zones approach, hydraulic conductivity, groundwater modelling using visual MODFLOW

Procedia PDF Downloads 171
382 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 106
381 Mathematical Description of Functional Motion and Application as a Feeding Mode for General Purpose Assistive Robots

Authors: Martin Leroux, Sylvain Brisebois

Abstract:

Eating a meal is among the Activities of Daily Living, but it takes a lot of time and effort for people with physical or functional limitations. Dedicated technologies are cumbersome and not portable, while general-purpose assistive robots such as wheelchair-based manipulators are too hard to control for elaborate continuous motion like eating. Eating with such devices has not previously been automated, since there existed no description of a feeding motion for uncontrolled environments. In this paper, we introduce a feeding mode for assistive manipulators, including a mathematical description of trajectories for motions that are difficult to perform manually such as gathering and scooping food at a defined/desired pace. We implement these trajectories in a sequence of movements for a semi-automated feeding mode which can be controlled with a very simple 3-button interface, allowing the user to have control over the feeding pace. Finally, we demonstrate the feeding mode with a JACO robotic arm and compare the eating speed, measured in bites per minute of three eating methods: a healthy person eating unaided, a person with upper limb limitations or disability using JACO with manual control, and a person with limitations using JACO with the feeding mode. We found that the feeding mode allows eating about 5 bites per minute, which should be sufficient to eat a meal under 30min.

Keywords: assistive robotics, automated feeding, elderly care, trajectory design, human-robot interaction

Procedia PDF Downloads 162
380 Development and Characterization of a Composite Material for Ceiling Board Construction Applications in Ethiopia

Authors: Minase Yitbarek Mengistu, Abrham Melkamu, Dawit Yisfaw, Bisrat Belihu, Abdulhakim Lalega

Abstract:

This research was aimed at reducing and recycling waste paper and sawdust from our environment, thereby reducing environmental pollution resulting from the management/disposal of these waste materials. In this research, some mechanical properties of composite ceiling board materials made from waste paper, sawdust, and pineapple leaf fibers were investigated to determine their suitability for use in low-cost construction work. The ceiling board was obtained from the waste of paper, sawdust chips, and pineapple leaf fibers by manual mechanical bonding techniques using dissolved polystyrene films as a binding agent. The results obtained showed that the water absorption values of between 6 % and 8.1 %; as well as density values of 500 kg/mm3 and 611.1 kg/mm3.From our result, the better one is a ratio of pineapple leaf fiber 25%, sawdust 40%, binder 25%, and waste paper 10%. The composite ceiling boards were successfully nailed with firm grips. These values obtained were compared with those of the conventional ceiling boards and it was observed that these composite materials can be used for internal low-cost construction work and Insulation (acoustic and thermal) performance. It is highly recommended that small and medium enterprises be encouraged to venture into waste recycling and the production of these composite ceiling materials to create jobs for skilled and unskilled labor that are locally available.

Keywords: composite material, environment, textile, ceiling board

Procedia PDF Downloads 72
379 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables

Authors: Hilal Karakuş, Berrin Akman

Abstract:

Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.

Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions

Procedia PDF Downloads 350
378 Using Multiple Strategies to Improve the Nursing Staff Edwards Lifesciences Hemodynamic Monitoring Correctness of Operation

Authors: Hsin-Yi Lo, Huang-Ju Jiun, Yu-Chiao Chu

Abstract:

Hemodynamic monitoring is an important in the intensive care unit. Advances in medical technology in recent years, more diversification of intensive care equipment, there are many kinds of instruments available for monitoring of hemodynamics, Edwards Lifesciences Hemodynamic Monitoring (FloTrac) is one of them. The recent medical safety incidents in parameters were changed, nurses have not to notify doctor in time, therefore, it is hoped to analyze the current problems and find effective improvement strategies. In August 2021, the survey found that only 74.0% of FloTrac correctness of operation, reasons include lack of education, the operation manual is difficulty read, lack of audit mechanism, nurse doesn't know those numerical changes need to notify doctor, work busy omission, unfamiliar with operation and have many nursing records then omissions. Improvement methods include planning professional nurse education, formulate the secret arts of FloTrac, enacting an audit mechanism, establish FloTrac action learning, make「follow the sun」care map, hold simulated training and establish monitoring data automatically upload nursing records. After improvement, FloTrac correctness of operation increased to 98.8%. The results are good, implement to the ICU of the hospital.

Keywords: hemodynamic monitoring, edwards lifesciences hemodynamic monitoring, multiple strategies, intensive care

Procedia PDF Downloads 81
377 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 329
376 The Effect of Body Positioning on Upper-Limb Arterial Occlusion Pressure and the Reliability of the Method during Blood Flow Restriction Training

Authors: Stefanos Karanasios, Charkleia Koutri, Maria Moutzouri, Sofia A. Xergia, Vasiliki Sakellari, George Gioftsos

Abstract:

The precise calculation of arterial occlusive pressure (AOP) is a critical step to accurately prescribe individualized pressures during blood flow restriction training (BFRT). AOP is usually measured in a supine position before training; however, previous reports suggested a significant influence in lower limb AOP across different body positions. The aim of the study was to investigate the effect of three different body positions on upper limb AOP and the reliability of the method for its standardization in clinical practice. Forty-two healthy participants (Mean age: 28.1, SD: ±7.7) underwent measurements of upper limb AOP in supine, seated, and standing positions by three blinded raters. A cuff with a manual pump and a pocket doppler ultrasound were used. A significantly higher upper limb AOP was found in seated compared with supine position (p < 0.031) and in supine compared with standing position (p < 0.031) by all raters. An excellent intraclass correlation coefficient (0.858- 0.984, p < 0.001) was found in all positions. Upper limb AOP is strongly dependent on body position changes. The appropriate measurement position should be selected to accurately calculate AOP before BFRT. The excellent inter-rater reliability and repeatability of the method suggest reliable and consistent results across repeated measurements.

Keywords: Kaatsu training, blood flow restriction training, arterial occlusion, reliability

Procedia PDF Downloads 212
375 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm

Procedia PDF Downloads 440
374 Hypertension and Its Association with Oral Health Status in Adults: A Pilot Study in Padusunan Adults Community

Authors: Murniwati, Nurul Khairiyah, Putri Ovieza Maizar

Abstract:

The association between general and oral health is clearly important, particularly in adults with medical conditions. Many of the medical systemic conditions are either caused or aggravated by poor oral hygiene and vice versa. Hypertension is one of common medical systemic problem which has been a public health concern worldwide due to its known consequences. Those consequences must be related to oral health status as well, whether it may cause or worsen the oral health conditions. The objective of this study was to find out the association between hypertension and oral health status in adults. This study was an analytical observational study by using cross-sectional method. A total of 42 adults both male and female in Padusunan Village, Pariaman, West Sumatra, Indonesia were selected as subjects by using purposive sampling. Manual sphygmomanometer was used to measure blood pressure and dental examination was performed to calculate the decayed, missing, and filled teeth (DMFT) scores in order to represent oral health status. The data obtained was analyzed statistically using One Way ANOVA to determine the association between hypertensive adults and their oral health status. The result showed that majority age of the subjects was ranging from 51-70 years (40.5%). Based on blood pressure examination, 57.1% of subjects were classified to prehypertension. Overall, the mean of DMFT score calculated in normal, prehypertension and hypertension group was not considered statistically significant. There was no significant association (p>0.05) between hypertension and oral health status in adults.

Keywords: blood pressure, hypertension, DMFT, oral health status

Procedia PDF Downloads 327
373 Comet Assay: A Promising Tool for the Risk Assessment and Clinical Management of Head and Neck Tumors

Authors: Sarim Ahmad

Abstract:

The Single Cell Gel Electrophoresis Assay (SCGE, known as comet assay) is a potential, uncomplicated, sensitive and state-of-the-art technique for quantitating DNA damage at individual cell level and repair from in vivo and in vitro samples of eukaryotic cells and some prokaryotic cells, being popular in its widespread use in various areas including human biomonitoring, genotoxicology, ecological monitoring and as a tool for research into DNA damage or repair in different cell types in response to a range of DNA damaging agents, cancer risk and therapy. The method involves the encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in neutral or alkaline (pH > 13) conditions, and electrophoresis of the suspended lysed cells, resulting in structures resembling comets as observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend towards the anode. This is followed by visual analysis with staining of DNA and calculating fluorescence to determine the extent of DNA damage. This can be performed by manual scoring or automatically by imaging software. The assay can, therefore, predict an individual’s tumor sensitivity to radiation and various chemotherapeutic drugs and further assess the oxidative stress within tumors and to detect the extent of DNA damage in various cancerous and precancerous lesions of oral cavity.

Keywords: comet assay, single cell gel electrophoresis, DNA damage, early detection test

Procedia PDF Downloads 292
372 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
371 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao

Abstract:

Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness

Procedia PDF Downloads 81