Search results for: learning management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15916

Search results for: learning management

15436 Cultural Understanding in Chinese Language Education for Foreigners: A Quest for Better Integration

Authors: Linhan Sun

Abstract:

With the gradual strengthening of China's economic development, more and more people around the world are learning Chinese due to economic and trade needs, which has also promoted the research related to Chinese language education for foreigners. Because the Chinese language system is different from the Western language system, learning Chinese is not easy for many learners. In addition, language learning cannot be separated from the learning and understanding of culture. How to integrate cultural learning into the curriculum of Chinese language education for foreigners is the focus of this study. Through a semi-structured in-depth interview method, 15 foreigners who have studied or are studying Chinese participated in this study. This study found that cultural learning and Chinese as a foreign language are relatively disconnected. In other words, learners were able to acquire a certain degree of knowledge of the Chinese language through textbooks or courses but did not gain a deeper understanding of Chinese culture.

Keywords: Chinese language education, Chinese culture, qualitative methods, intercultural communication

Procedia PDF Downloads 170
15435 Improving Learning and Teaching of Software Packages among Engineering Students

Authors: Sara Moridpour

Abstract:

To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.

Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment

Procedia PDF Downloads 115
15434 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 213
15433 How To Get Students’ Attentions?: Little Tricks From 15 English Teachers In Labuan

Authors: Suriani Oxley

Abstract:

All teachers aim to conduct a successful and an effective teaching. Teacher will use a variety of teaching techniques and methods to ensure that students achieve the learning objectives but often the teaching and learning processes are interrupted by a number of things such as noisy students, students not paying attention, the students play and so on. Such disturbances must be addressed to ensure that students can concentrate on their learning activities. This qualitative study observed and captured a video of numerous tricks that teachers in Labuan have implemented in helping the students to pay attentions in the classroom. The tricks are such as Name Calling, Non-Verbal Clues, Body Language, Ask Question, Offer Assistance, Echo Clapping, Call and Response & Cues and Clues. All of these tricks are simple but yet interesting language learning strategies that helped students to focus on their learning activities.

Keywords: paying attention, observation, tricks, learning strategies, classroom

Procedia PDF Downloads 566
15432 'English in Tourism' in the Project 'English for Community'

Authors: Nguyen Duc An

Abstract:

To the movement towards learning community, creating friendly, positive and appropriate learning environments which best suit the local features is the most salient and decisive factor of the development and success of that learning society. With the aim at building such an English language learning community for the inhabitants in Moc Chau - the national tourist zone, Tay Bac University has successfully designed and deployed the program ‘English in Tourism’ in the project ‘English for Community’. With the strong attachment to the local reality and close knit to the certain communicative situations, this program which was carefully designed and compiled with interesting and practical activities, has greatly helped the locals confidently introduce and popularize the natural beauty, unique culture and specific characteristics of Moc Chau to the foreign tourists; in addition, reinforce awareness of the native culture of the local people as well as improve the professional development in tourism and service.

Keywords: English for community, learning society, learning community, English in tourism

Procedia PDF Downloads 368
15431 A Study on Pre-Service English Language Teacher's Language Self-Efficacy and Goal Orientation

Authors: Ertekin Kotbas

Abstract:

Teaching English as a Foreign Language (EFL) is on the front burner of many countries in the world, in particular for English Language Teaching departments that train EFL teachers. Under the head of motivational theories in foreign language education, there are numerous researches in literature. However; researches comprising English Language Self-Efficacy and Teachers’ Learning Goal Orientation which has a positive impact on learning teachings skills are scarce. Examination of these English Language self-efficacy beliefs and Learning Goal Orientations of Pre-Service EFL Teachers may broaden the horizons, in consideration the importance of self-efficacy and goal orientation on learning and teaching activities. At this juncture, the present study aims to investigate the relationship between English Language Self-Efficacy and Teachers’ Learning Goal Orientation from Turkish context.

Keywords: English language, learning goal orientation, self-efficacy, pre-service teachers

Procedia PDF Downloads 492
15430 Revisiting High School Students’ Learning Styles in English Subject

Authors: Aroona Hashmi

Abstract:

The prime motive for this endeavor was to explore the tenth grade English class students’ preferred learning styles studying in government secondary school so that English subject teachers could tailor their pedagogical strategies in relation to their students learning needs. The further aim of this study was to identify any significance difference among the students on a gender basis, area basis and different categories of school basis. The population of this study consisting of all the secondary level schools working in the government sector and positioned in the province of Punjab. The multi-stage cluster sampling method was employed while selecting the study sample from the population. The scale used for the identification of students’ learning styles in this study was developed by Grasha-Riechmann. The data collected through learning style scale was analyzed by employing descriptive statistics technique. The results from data analysis depict that learning styles of the majority of students found to be Collaborative and Competitive. Overall, no considerable difference was surfaced between male-female, urban-rural, general-other categories of 10th grade English class students learning styles.

Keywords: learning style, learning style scale, grade, government sector

Procedia PDF Downloads 341
15429 Reducing Lean by Implementing Distance Learning in the Training Programs of Oil and Gas Industries

Authors: Sayed-Mahdi Hashemi-Dehkordi, Ian Baker

Abstract:

This paper investigates the benefits of implementing distance learning in training courses for the oil and gas industries to reduce lean. Due to the remote locations of many oil and gas operations, scheduling and organizing in-person training classes for employees in these sectors is challenging. Furthermore, considering that employees often work in periodic shifts such as day, night, and resting periods, arranging in-class training courses requires significant time and transportation. To explore the effectiveness of distance learning compared to in-class learning, a set of questionnaires was administered to employees of a far on-shore refinery unit in Iran, where both in-class and distance classes were conducted. The survey results revealed that over 72% of the participants agreed that distance learning saved them a significant amount of time by rating it 4 to 5 points out of 5 on a Likert scale. Additionally, nearly 67% of the participants acknowledged that distance learning considerably reduced transportation requirements, while approximately 64% agreed that it helped in resolving scheduling issues. Introducing and encouraging the use of distance learning in the training environments of oil and gas industries can lead to notable time and transportation savings for employees, ultimately reducing lean in a positive manner.

Keywords: distance learning, in-class learning, lean, oil and gas, scheduling, time, training programs, transportation

Procedia PDF Downloads 68
15428 Social Skills for Students with and without Learning Disabilities in Primary Education in Saudi Arabia

Authors: Omer Agail

Abstract:

The purpose of this study was to assess the social skills of students with and without learning disabilities in primary education in Saudi Arabia. A Social Skills Rating Scale for Teachers Form (SSRS-TF) was used to evaluate students' social skills as perceived by teachers. A randomly-selected sample was chosen from students with and without learning disabilities. Descriptive statistics were used to describe the demographic characteristics of participants. Analysis indicated that there were statistically significant differences in SSRS-TF by academic status, i.e. students with learning disabilities exhibit less social skills compared to students without learning disabilities. In addition, analysis indicated that there were no statistically significant differences in SSRS-TF by gender. A conclusion and recommendations are presented.

Keywords: primary education, students with learning disabilities, social skills, social competence

Procedia PDF Downloads 391
15427 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System

Authors: Dong Seop Lee, Byung Sik Kim

Abstract:

In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.

Keywords: disaster information management, unstructured data, optical character recognition, machine learning

Procedia PDF Downloads 129
15426 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 88
15425 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 70
15424 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: hybrid energy system, optimum sizing, power management, TLBO

Procedia PDF Downloads 578
15423 Organisational Blogging: Reviewing Its Effectiveness as an Organisational Learning Tool

Authors: Gavin J. Baxter, Mark H. Stansfield

Abstract:

This paper reviews the internal use of blogs and their potential effectiveness as organisational learning tools. Prior to and since the emergence of the concept of ‘Enterprise 2.0’ there still remains a lack of empirical evidence associated with how organisations are applying social media tools and whether they are effective towards supporting organisational learning. Surprisingly, blogs, one of the more traditional social media tools, still remains under-researched in the context of ‘Enterprise 2.0’ and organisational learning. The aim of this paper is to identify the theoretical linkage between blogs and organisational learning in addition to reviewing prior research on organisational blogging with a view towards exploring why this area remains under-researched and identifying what needs to be done to try and move the area forward. Through a review of the literature, one of the principal findings of this paper is that organisational blogs, dependent on their use, do have a mutual compatibility with the interpretivist aspect of organisational learning. This paper further advocates that further empirical work in this subject area is required to substantiate this theoretical assumption.

Keywords: Enterprise 2.0, blogs, organisational learning, social media tools

Procedia PDF Downloads 286
15422 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 126
15421 Post Earthquake Volunteer Learning That Build up Caring Learning Communities

Authors: Naoki Okamura

Abstract:

From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.

Keywords: moral development, moral education, service learning, volunteer learning

Procedia PDF Downloads 320
15420 Impact of Work Cycles on Autonomous Digital Learning

Authors: Bi̇rsen Tutunis, Zuhal Aydin

Abstract:

Guided digital learning has attracted many researchers as it leads to autonomous learning.The developments in Guided digital learning have led to changes in teaching and learning in English Language Teaching classes (Jeong-Bae, 2014). This study reports on tasks designed under the principles of learner autonomy in an online learning platform ‘’Webquest’’ with the purpose of teaching English to Turkish tertiary level students at a foundation university in Istanbul. Guided digital learning blog project contents were organized according to work-cycles phases (planning and negotiation phase, decision-making phase, project phase and evaluation phase) which are compatible with the principles of autonomous learning (Legenhausen,2003). The aim of the study was to implement the class blog project to find out its impact on students’ behaviours and beliefs towards autonomous learning. The mixed method research approach was taken. 24 tertiary level students participated in the study on voluntary basis. Data analysis was performed with Statistical Package for the Social Sciences. According to the results, students' attitudes towards digital learning did not differ before and after the training application. The learning styles of the students and their knowledge on digital learning scores differed. It has been observed that the students' learning styles and their digital learning scores increased after the training application. Autonomous beliefs, autonomous behaviors, group cohesion and group norms differed before and after the training application. Students' motivation level, strategies for learning English, perceptions of responsibility and out-of-class activity scores differed before and after the training application. It was seen that work-cycles in online classes create student centered learning that fosters autonomy. This paper will display the work cycles in detail and the researchers will give examples of in and beyond class activities and blog projects.

Keywords: guided digital learning, work cycles, english language teaching, autonomous learning

Procedia PDF Downloads 78
15419 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 150
15418 Learning Resources as Determinants for Improving Teaching and Learning Process in Nigerian Universities

Authors: Abdulmutallib U. Baraya, Aishatu M. Chadi, Zainab A. Aliyu, Agatha Samson

Abstract:

Learning Resources is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating learning materials, learners, and the learning process in order to improve teaching and learning in university-level education essential for empowering students and various sectors of Nigeria’s economy to succeed in a fast-changing global economy. Innovation in the information age of the 21st century is the use of educational technologies in the classroom for instructional delivery, it involves the use of appropriate educational technologies like smart boards, computers, projectors and other projected materials to facilitate learning and improve performance. The study examined learning resources as determinants for improving the teaching and learning process in Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi state of Nigeria. Three objectives, three research questions and three null hypotheses guided the study. The study adopted a Survey research design. The population of the study was 880 lecturers. A sample of 260 was obtained using the research advisor table for determining sampling, and 250 from the sample was proportionately selected from the seven faculties. The instrument used for data collection was a structured questionnaire. The instrument was subjected to validation by two experts. The reliability of the instrument stood at 0.81, which is reliable. The researchers, assisted by six research assistants, distributed and collected the questionnaire with a 75% return rate. Data were analyzed using mean and standard deviation to answer the research questions, whereas simple linear regression was used to test the null hypotheses at a 0.05 level of significance. The findings revealed that physical facilities and digital technology tools significantly improved the teaching and learning process. Also, consumables, supplies and equipment do not significantly improve the teaching and learning process in the faculties. It was recommended that lecturers in the various faculties should strengthen and sustain the use of digital technology tools, and there is a need to strive and continue to properly maintain the available physical facilities. Also, the university management should, as a matter of priority, continue to adequately fund and upgrade equipment, consumables and supplies frequently to enhance the effectiveness of the teaching and learning process.

Keywords: education, facilities, learning-resources, technology-tools

Procedia PDF Downloads 23
15417 Identifying Learning Support Patterns for Enhancing Quality Outputs in Massive Open Online Courses

Authors: Cristina Galván-Fernández, Elena Barberà, Jingjing Zhang

Abstract:

In recent years, MOOCs have been in the spotlight for its high drop-out rates, which potentially impact on the quality of the learning experience. This study attempts to explore how learning support can be used to keep student retention, and in turn to improve the quality of learning in MOOCs. In this study, the patterns of learning support were identified from a total of 4202592 units of video sessions, clickstream data of 25600 students, and 382 threads generated in 10 forums (optional and mandatory) in five different types of MOOCs (e.g. conventional MOOCs, professional MOOCs, and informal MOOCs). The results of this study have shown a clear correlation between the types of MOOCs, the design framework of the MOOCs, and the learning support. The patterns of tutor-peer interaction are identified, and are found to be highly correlated with student retention in all five types of MOOCs. In addition, different patterns of ‘good’ students were identified, which could potentially inform the instruction design of MOOCs.

Keywords: higher education, learning support, MOOC, retention

Procedia PDF Downloads 335
15416 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna - Algeria

Authors: Bahloul Amel

Abstract:

This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical self-awareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.

Keywords: lifelong learning, EFL, contextualized learning, Algeria

Procedia PDF Downloads 348
15415 Women Learning in Creative Project Based Learning of Engineering Education

Authors: Jui Hsuan Hung, Jeng Yi Tzeng

Abstract:

Engineering education in the higher education is always male dominated. Therefore, women learning in this environment is an important research topic for feminists, gender researchers and engineering education researchers, especially in the era of gender mainstreaming. The research topics are from the dialectical discussion of feminism and science development history, gender issues of science education, to the subject choice of female students. These researches enrich the field of gender study in engineering education but lack of describing the detailed images of women in engineering education, including their learning, obstacles, needs or feelings. Otherwise, in order to keep up with the industrial trends of emphasizing group collaboration, engineering education turns from traditional lecture to creative group inquiry pedagogy in recent years. Creative project based learning is one of the creative group inquiry pedagogy which the engineering education in higher education adopts often, and it is seen as a gender-inclusive pedagogy in engineering education. Therefore, in order to understand the real situation of women learning in engineering education, this study took place in a course (Introduction to Engineering) offered by the school of engineering of a university in Taiwan. This course is designed for freshman students to establish basic understanding engineering from four departments (Chemical Engineering, Power Mechanical Engineering, Materials Science, Industrial Engineering and Engineering Management). One section of this course is to build a Hydraulic Robot designed by the Department of Power Mechanical Engineering. 321 students in the school of engineering took this course and all had the reflection questionnaire. These students are divided into groups of 5 members to work on this project. The videos of process of discussion of five volunteered groups with different gender composition are analyzed, and six women of these five groups are interviewed. We are still on the process of coding and analyzing videos and the qualitative data, but several tentative findings have already emerged. (1) The activity models of groups of both genders are gender segregation, and not like women; men never be the ‘assistants’. (2) The culture of the group is developed by the major gender, but men always dominate the process of practice in all kinds of gender composition groups. (3) Project based learning is supposed to be a gender-inclusive learning model in creative engineering education, but communication obstacles between men and women make it less women friendly. (4) Gender identity, not professional identity, is adopted by these women while they interact with men in their groups. (5) Gender composition and project-based learning pedagogy are not the key factors for women learning in engineering education, but the gender conscience awareness is.

Keywords: engineering education, gender education, creative project based learning, women learning

Procedia PDF Downloads 311
15414 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service

Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura

Abstract:

Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.

Keywords: consensus building, value co-creation, higher education, learning service

Procedia PDF Downloads 302
15413 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 134
15412 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 53
15411 The Challenges of Hyper-Textual Learning Approach for Religious Education

Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi

Abstract:

State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.

Keywords: Hyper-textual, learning, religious education, learning text

Procedia PDF Downloads 312
15410 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 110
15409 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco

Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali

Abstract:

This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.

Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco

Procedia PDF Downloads 17
15408 Program Level Learning Outcomes in Music and Technology: Toward Improved Assessment and Better Communication

Authors: Susan Lewis

Abstract:

The assessment of learning outcomes at the program level has attracted much international interest from the perspectives of quality assurance and ongoing curricular redesign and renewal. This paper examines program-level learning outcomes in the field of music and technology, an area of study that has seen an explosion in program development over the past fifteen years. The Audio Engineering Society (AES) maintains an online directory of educational institutions worldwide, yielding the most comprehensive inventory of programs and courses in music and technology. The inventory includes courses, programs, and degrees in music and technology, music and computer science, music production, and the music industry. This paper focuses on published student learning outcomes for undergraduate degrees in music and technology and analyses commonalities at institutions in North America, the United Kingdom, and Europe. The results of a survey of student learning outcomes at twenty institutions indicates a focus on three distinct student learning outcomes: (1) cross-disciplinary knowledge in the fields of music and technology; (2) the practical application of training through the professional industry; and (3) the acquisition of skills in communication and collaboration. The paper then analyses assessment mechanisms for tracking student learning and achievement of learning outcomes at these institutions. The results indicate highly variable assessment practices. Conclusions offer recommendations for enhancing assessment techniques and better communicating learning outcomes to students.

Keywords: quality assurance, student learning; learning outcomes, music and technology

Procedia PDF Downloads 185
15407 People Management, Knowledge Sharing and Intermediary Variables

Authors: Nizar Mansour, Chiha Gaha, Emna Gara

Abstract:

The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.

Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia

Procedia PDF Downloads 332