Search results for: hospital waste management (HWM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12861

Search results for: hospital waste management (HWM)

12381 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Hesham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: durability, glass waste, freeze-thaw cycles, non-destructive test

Procedia PDF Downloads 356
12380 Cat Stool as an Additive Aggregate to Garden Bricks

Authors: Mary Joy B. Amoguis, Alonah Jane D. Labtic, Hyna Wary Namoca, Aira Jane V. Original

Abstract:

Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks.

Keywords: cat stool, garden bricks, cement, concentrations, animal wastes, compressive strength, durability, one-way ANOVA, additive, incineration, aggregates, stray cats

Procedia PDF Downloads 44
12379 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 483
12378 E-Waste Generation in Bangladesh: Present and Future Estimation by Material Flow Analysis Method

Authors: Rowshan Mamtaz, Shuvo Ahmed, Imran Noor, Sumaiya Rahman, Prithvi Shams, Fahmida Gulshan

Abstract:

Last few decades have witnessed a phenomenal rise in the use of electrical and electronic equipment globally in our everyday life. As these items reach the end of their lifecycle, they turn into e-wastes and contribute to the waste stream. Bangladesh, in conformity with the global trend and due to its ongoing rapid growth, is also using electronics-based appliances and equipment at an increasing rate. This has caused a corresponding increase in the generation of e-wastes. Bangladesh is a developing country; its overall waste management system, is not yet efficient, nor is it environmentally sustainable. Most of its solid wastes are disposed of in a crude way at dumping sites. Addition of e-wastes, which often contain toxic heavy metals, into its waste stream has made the situation more difficult and challenging. Assessment of generation of e-wastes is an important step towards addressing the challenges posed by e-wastes, setting targets, and identifying the best practices for their management. Understanding and proper management of e-wastes is a stated item of the Sustainable Development Goals (SDG) campaign, and Bangladesh is committed to fulfilling it. A better understanding and availability of reliable baseline data on e-wastes will help in preventing illegal dumping, promote recycling, and create jobs in the recycling sectors and thus facilitate sustainable e-waste management. With this objective in mind, the present study has attempted to estimate the amount of e-wastes and its future generation trend in Bangladesh. To achieve this, sales data on eight selected electrical and electronic products (TV, Refrigerator, Fan, Mobile phone, Computer, IT equipment, CFL (Compact Fluorescent Lamp) bulbs, and Air Conditioner) have been collected from different sources. Primary and secondary data on the collection, recycling, and disposal of the e-wastes have also been gathered by questionnaire survey, field visits, interviews, and formal and informal meetings with the stakeholders. Material Flow Analysis (MFA) method has been applied, and mathematical models have been developed in the present study to estimate e-waste amounts and their future trends up to the year 2035 for the eight selected electrical and electronic equipment. End of life (EOL) method is adopted in the estimation. Model inputs are products’ annual sale/import data, past and future sales data, and average life span. From the model outputs, it is estimated that the generation of e-wastes in Bangladesh in 2018 is 0.40 million tons and by 2035 the amount will be 4.62 million tons with an average annual growth rate of 20%. Among the eight selected products, the number of e-wastes generated from seven products are increasing whereas only one product, CFL bulb, showed a decreasing trend of waste generation. The average growth rate of e-waste from TV sets is the highest (28%) while those from Fans and IT equipment are the lowest (11%). Field surveys conducted in the e-waste recycling sector also revealed that every year around 0.0133 million tons of e-wastes enter into the recycling business in Bangladesh which may increase in the near future.

Keywords: Bangladesh, end of life, e-waste, material flow analysis

Procedia PDF Downloads 172
12377 Organizational Culture of a Public and a Private Hospital in Brazil

Authors: Fernanda Ludmilla Rossi Rocha, Thamiris Cavazzani Vegro, Silvia Helena Henriques Camelo, Carmen Silvia Gabriel, Andrea Bernardes

Abstract:

Introduction: Organizations are cultural, symbolic and imaginary systems composed by values and norms. These values and norms represent the organizational culture, which determines the behavior of the workers, guides the work practices and impacts the quality of care and the safety culture of health services worldwide. Objective: To analyze the organizational culture of a public and a private hospital in Brazil. Method: Descriptive study with quantitative approach developed in a public and in a private hospital of Brazil. Sample was composed by 281 nursing workers, of which 73 nurses and 208 nursing auxiliaries and technicians. The data collection instrument comprised the Brazilian Instrument for Assessing Organizational Culture. Data were collected from March to December 2013. Results: At the public hospital, the results showed an average score of 2.85 for the values concerning cooperative professionalism (CP); 3.02 for values related to hierarchical rigidity and the centralization of power (HR); 2.23 for individualistic professionalism and competition at work (IP); 2.22 for values related to satisfaction, well-being and motivation of workers (SW); 3.47 for external integration (EI); 2.03 for rewarding and training practices (RT); 2.75 for practices related to the promotion of interpersonal relationships (IR) About the private hospital, the results showed an average score of 3.24 for the CP; 2.83 for HR; 2.69 for IP; 2.71 for SW; 3.73 for EI; 2.56 for RT; 2.83 for IR at the hospital. Discussion: The analysis of organizational values of the studied hospitals shows that workers find the existence of hierarchical rigidity and the centralization of power in the institutions; believed there was cooperation at workplace, though they perceived individualism and competition; believed that values associated with the workers’ well-being, satisfaction and motivation were seldom acknowledged by the hospital; believed in the adoption of strategic planning actions within the institution, but considered interpersonal relationship promotion, continuous education and the rewarding of workers to be little valued by the institution. Conclusion: This work context can lead to professional dissatisfaction, compromising the quality of care and contributing to the occurrence of occupational diseases.

Keywords: nursing management, organizational culture, quality of care, interpersonal relationships

Procedia PDF Downloads 412
12376 Time to CT in Major Trauma in Coffs Harbour Health Campus - The Australian Rural Centre Experience

Authors: Thampi Rawther, Jack Cecire, Andrew Sutherland

Abstract:

Introduction: CT facilitates the diagnosis of potentially life-threatening injuries and facilitates early management. There is evidence that reduced CT acquisition time reduces mortality and length of hospital stay. Currently, there are variable recommendations for ideal timing. Indeed, the NHS standard contract for a major trauma service and STAG both recommend immediate access to CT within a maximum time of 60min and appropriate reporting within 60min of the scan. At Coffs Harbour Health Campus (CHHC), a CT radiographer is on site between 8am-11pm. Aim: To investigate the average time to CT at CHHC and assess for any significant relationship between time to CT and injury severity score (ISS) or time of triage. Method: All major trauma calls between Jan 2021-Oct 2021 were audited (N=87). Patients were excluded if they went from ED to the theatre. Time to CT is defined as the time between triage to the timestamp on the first CT image. Median and interquartile range was used as a measure of central tendency as the data was not normally distributed, and Chi-square test was used to determine association. Results: The median time to CT is 51.5min (IQR 40-74). We found no relationship between time to CT and ISS (P=0.18) and time of triage to time to CT (P=0.35). We compared this to other centres such as John Hunter Hospital and Gold Coast Hospital. We found that the median CT acquisition times were 76min (IQR 52-115) and 43min, respectively. Conclusion: This shows an avenue for improvement given 35% of CT’s were >30min. Furthermore, being proactive and aware of time to CT as an important factor to trauma management can be another avenue for improvement. Based on this, we will re-audit in 12-24months to assess if any improvement has been made.

Keywords: imaging, rural surgery, trauma surgery, improvement

Procedia PDF Downloads 91
12375 A Literature Review on the Use of Information and Communication Technology within and between Emergency Medical Teams during a Disaster

Authors: Badryah Alshehri, Kevin Gormley, Gillian Prue, Karen McCutcheon

Abstract:

In a disaster event, sharing patient information between the pre-hospitals Emergency Medical Services (EMS) and Emergency Department (ED) hospitals is a complex process during which important information may be altered or lost due to poor communication. The aim of this study was to critically discuss the current evidence base in relation to communication between pre-EMS hospital and ED hospital professionals by the use of Information and Communication Systems (ICT). This study followed the systematic approach; six electronic databases were searched: CINAHL, Medline, Embase, PubMed, Web of Science, and IEEE Xplore Digital Library were comprehensively searched in January 2018 and a second search was completed in April 2020 to capture more recent publications. The study selection process was undertaken independently by the study authors. Both qualitative and quantitative studies were chosen that focused on factors which are positively or negatively associated with coordinated communication between pre-hospital EMS and ED teams in a disaster event. These studies were assessed for quality and the data were analysed according to the key screening themes which emerged from the literature search. Twenty-two studies were included. Eleven studies employed quantitative methods, seven studies used qualitative methods, and four studies used mixed methods. Four themes emerged on communication between EMTs (pre-hospital EMS and ED staff) in a disaster event using the ICT. (1) Disaster preparedness plans and coordination. This theme reported that disaster plans are in place in hospitals, and in some cases, there are interagency agreements with pre-hospital and relevant stakeholders. However, the findings showed that the disaster plans highlighted in these studies lacked information regarding coordinated communications within and between the pre-hospital and hospital. (2) Communication systems used in the disaster. This theme highlighted that although various communication systems are used between and within hospitals and pre-hospitals, technical issues have influenced communication between teams during disasters. (3) Integrated information management systems. This theme suggested the need for an integrated health information system which can help pre-hospital and hospital staff to record patient data and ensure the data is shared. (4) Disaster training and drills. While some studies analysed disaster drills and training, the majority of these studies were focused on hospital departments other than EMTs. These studies suggest the need for simulation disaster training and drills, including EMTs. This review demonstrates that considerable gaps remain in the understanding of the communication between the EMS and ED hospitals staff in relation to response in disasters. The review shows that although different types of ICTs are used, various issues remain which affect coordinated communication among the relevant professionals.

Keywords: communication, emergency communication services, emergency medical teams, emergency physicians, emergency nursing, paramedics, information and communication technology, communication systems

Procedia PDF Downloads 71
12374 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 117
12373 Possibilities and Challenges for District Heating

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.

Keywords: district heating, sustainable business strategies, sustainable development, system approach

Procedia PDF Downloads 68
12372 Valorisation of Polyethylene and Plastic Bottle Wastes as Pavement Blocks

Authors: Babagana Mohammed, Fidelis Patrick Afangide

Abstract:

This research investigated the possibility of using waste low-dense polyethylene and waste plastic bottles for the production of interlock pavement blocks. In many parts of the world, interlock pavement block is used widely as modern day solution to outdoor flooring applications and the blocks have different shapes, sizes and colours suiting the imagination of landscape architects. Using suitable and conventional mould having a 220 x 135 x 50 mm³ shape, the interlock blocks were produced. The material constituents of the produced blocks were waste low-dense polyethylene and waste plastic bottles mixed in varying, respective percentage-weight proportions of; 100%+0%, 75%+25%, 50%+50% and 25%+75%. The blocks were then tested for unconfined compressive strength and water absorption properties. The test results compared well with those of conventional concrete interlock blocks and the research demonstrates the possibility of value recovery from the waste streams which are currently dumped in open-spaces thereby affecting the environment.

Keywords: pavement blocks, polyethylene, plastic bottle, wastes, valorization

Procedia PDF Downloads 380
12371 Investigation the Effect of Partial Replacement of Fine Aggregates with Ceramic

Authors: Yared Assefa Demessie

Abstract:

This study may help to establish the appropriateness of ceramic waste aggregate for concrete production since it is obviously understood that the rising from continuous urbanization and industrialization development leads depletion of natural construction resource and the disposal of waste material. It can be used as base to conduct a study on the alternative readily available materials like ceramic industrial waste aggregates can lead to environmental concrete. The study assessed the fresh and hardened properties of the concrete produced by replacing part of the natural fine aggregate with an aggregate produced from ceramic industrial waste. In the study, experimental investigation was employed which involved two major tasks: material specifications and experimental evaluation of concrete were done in the laboratory. Experimental investigations such that workability, unit weight, compressive strength test, tensile strength test and flexural strength test for C-25 concrete mixes with different percentages of ceramic industrial waste aggregate after a curing period of 7 and 28 days has done and interpreted the result statically using mean, standard deviation and coefficient of variance.

Keywords: ceramic industrial waste, fresh concrete, hardened concrete, fine aggregate

Procedia PDF Downloads 40
12370 Application Use of Slaughterhouse Waste to Improve Nutrient Level in Apium glaviolens

Authors: Hasan Basri Jumin

Abstract:

Using the slaughterhouse waste combined to suitable dose of nitrogen fertilizer to Apium glaviolen gives the significant effect to mean relative growth rate. The same pattern also showed significantly in net assimilation rate. The net assimilation rate increased significantly during 42 days old plants. Combination of treatment of 100 ml/l animal slaughterhouse waste and 0.1 g/kg nitrogen fertilizer/kg soil increased the vegetative growth of Apium glaviolens. The biomass of plant and mean relative growth rate of Apium glaviolens were rapidly increased in 4 weeks after planting and gradually decreased after 35 days at the harvest time. Combination of 100 ml/l slaughterhouse waste and applied 0.1 g/kg nitrogen fertilizer has increased all parameters. The highest vegetative growth, biomass, mean relative growth rate and net assimilation rate were received from 0.56 mg-l.m-2.days-1.

Keywords: Apium glaviolent, nitrogen, pollutant, slaughterhouse, waste

Procedia PDF Downloads 346
12369 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment

Authors: Arvind Kumar

Abstract:

The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.

Keywords: Kanpur, marine environment, drain waste management, plastic fisher

Procedia PDF Downloads 46
12368 Determination of the Shear Strength of Wastes Using Back-Analyses from Observed Failures

Authors: Sadek Salah

Abstract:

The determination of the strength characteristics of waste materials is essential when evaluating the stability of waste fills during initial placement and at the time of closure and rehabilitation of the landfill. Significant efforts, mostly experimental, have been deployed to date in attempts to quantify the mechanical properties of municipal wastes various stages of decomposition. Even though the studies and work done so far have helped in setting baseline parameters and characteristics for waste materials, inherent concerns remain as to the scalability of the findings between the laboratory and the field along with questions as to the suitability of the actual test conditions. These concerns are compounded by the complexity of the problem itself with significant variability in composition, placement conditions, and levels of decay of the various constituents of the waste fills. A complimentary, if not necessarily an alternative approach is to rely on field observations of behavior and instability of such materials. This paper describes an effort at obtaining relevant shear strength parameters from back-analyses of failures which have been observed at a major un-engineered waste fill along the Mediterranean shoreline. Results from the limit-equilibrium failure back-analyses are presented and compared to results from laboratory-scale testing on comparable waste materials.

Keywords: solid waste, shear strength, landfills, slope stability

Procedia PDF Downloads 227
12367 Audit of Urgent and Non-Urgent Patient Visits to the Emergency: A Case-Control Study

Authors: Peri Harish Kumar, Rafique Umer Harvitkar

Abstract:

Background: The emergency department mandates maximum efficacy in the utilization of the available resources. Non-urgent patient visits pose a serious concern to the treatment, patient triage, and resources available. Aims and Objectives: We conducted a retrospective case-control study of the emergency department patient list from October 2019 to November 2022. A total of 839 patients formed part of the study. Somatic complaints, vital signs, diagnostic test results, admission to the hospital, etc., were some of the criteria used for the categorization of patients. Results: The proportion of non-urgent visits varied from 7.2% to 43%, with a median of 21%. Somatic complaints were the least associated with further hospital admissions (n=28%), while diagnostic test results were the most significant indicator of further hospital admissions (n=74%). Effective triage helped minimize emergency department admissions by 36%. Conclusion: Our study shows that effective triaging, patient counselling, and round-the-clock consumable monitoring helped in the effective management of patients admitted and also significantly helped provide treatment to the patients most in need.

Keywords: urgent visits, non-urgent visits, traiging, emergency department admissions

Procedia PDF Downloads 91
12366 Long-Term Outcome of Emergency Response Team System in In-Hospital Cardiac Arrest

Authors: Jirapat Suriyachaisawat, Ekkit Surakarn

Abstract:

Introduction: To improve early detection and mortality rate of in-hospital cardiac arrest, Emergency Response Team (ERT) system was planned and implemented since June 2009 to detect pre-arrest conditons and for any concerns. The ERT consisted of on duty physicians and nurses from emergency department. ERT calling criteria consisted of acute change of HR < 40 or > 130 beats per minute, systolic blood pressure < 90 mmHg, respiratory rate <8 or >28 breaths per minute, O2 saturation <90%, acute change in conscious state, acute chest pain or worry about the patients. From the data on ERT system implementation in our hospital in early phase (during June 2009-2011), there was no statistic significance in difference in in-hospital cardiac arrest incidence and overall hospital mortality rate. Since the introduction of the ERT service in our hospital, we have conducted continuous educational campaign to improve awareness in an attempt to increase use of the service. Methods: To investigate outcome of ERT system in in-hospital cardiac arrest and overall hospital mortality rate, we conducted a prospective, controlled before-and after examination of the long term effect of a ERT system on the incidence of cardiac arrest. We performed chi-square analysis to find statistic significance. Results: Of a total 623 ERT cases from June 2009 until December 2012, there were 72 calls in 2009, 196 calls in 2010, 139 calls in 2011 and 245 calls in 2012. The number of ERT calls per 1000 admissions in year 2009-10 was 7.69; 5.61 in 2011 and 9.38 in 2013. The number of code blue calls per 1000 admissions decreased significantly from 2.28 to 0.99 per 1000 admissions (P value < 0.001). The incidence of cardiac arrest decreased progressively from 1.19 to 0.34 per 1000 admissions and significant in difference in year 2012 (P value < 0.001 ). The overall hospital mortality rate decreased by 8 % from 15.43 to 14.43 per 1000 admissions (P value 0.095). Conclusions: ERT system implementation was associated with progressive reduction in cardiac arrests over three year period, especially statistic significant in difference in 4th year after implementation. We also found an inverse association between number of ERT use and the risk of occurrence of cardiac arrests, but we have not found difference in overall hospital mortality rate.

Keywords: cardiac arrest, outcome, in-hospital, ERT

Procedia PDF Downloads 185
12365 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles

Authors: Sonjida Mustafia

Abstract:

Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.

Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure

Procedia PDF Downloads 73
12364 Early Outcomes and Lessons from the Implementation of a Geriatric Hip Fracture Protocol at a Level 1 Trauma Center

Authors: Peter Park, Alfonso Ayala, Douglas Saeks, Jordan Miller, Carmen Flores, Karen Nelson

Abstract:

Introduction Hip fractures account for more than 300,000 hospital admissions every year. Many present as fragility fractures in geriatric patients with multiple medical comorbidities. Standardized protocols for the multidisciplinary management of this patient population have been shown to improve patient outcomes. A hip fracture protocol was implemented at a Level I Trauma center with a focus on pre-operative medical optimization and early surgical care. This study evaluates the efficacy of that protocol, including the early transition period. Methods A retrospective review was performed of all patients ages 60 and older with isolated hip fractures who were managed surgically between 2020 and 2022. This included patients 1 year prior and 1 year following the implementation of a hip fracture protocol at a Level I Trauma center. Results 530 patients were identified: 249 patients were treated before, and 281 patients were treated after the protocol was instituted. There was no difference in mean age (p=0.35), gender (p=0.3), or Charlson Comorbidity Index (p=0.38) between the cohorts. Following the implementation of the protocol, there were observed increases in time to surgery (27.5h vs. 33.8h, p=0.01), hospital length of stay (6.3d vs. 9.7d, p<0.001), and ED LOS (5.1h vs. 6.2h, p<0.001). There were no differences in in-hospital mortality (2.01% pre vs. 3.20% post, p=0.39) and complication rates (25% pre vs 26% post, p=0.76). A trend towards improved outcomes was seen after the early transition period but failed to yield statistical significance. Conclusion Early medical management and surgical intervention are key determining factors affecting outcomes following fragility hip fractures. The implementation of a hip fracture protocol at this institution has not yet significantly affected these parameters. This could in part be due to the restrictions placed at this institution during the COVID-19 pandemic. Despite this, the time to OR pre-and post-implementation was quicker than figures reported elsewhere in literature. Further longitudinal data will be collected to determine the final influence of this protocol. Significance/Clinical Relevance Given the increasing number of elderly people and the high morbidity and mortality associated with hip fractures in this population finding cost effective ways to improve outcomes in the management of these injuries has the potential to have enormous positive impact for both patients and hospital systems.

Keywords: hip fracture, geriatric, treatment algorithm, preoperative optimization

Procedia PDF Downloads 58
12363 Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement

Authors: Vatsal Patel, Niraj Shah

Abstract:

The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits.

Keywords: durability, high performance concrete, marble waste powder, sorptivity, accelerated corrosion

Procedia PDF Downloads 329
12362 Co-Pyrolysis Characteristics of Waste Polyolefins

Authors: Si̇nem Uğuz, Yuksel Ardali

Abstract:

Nowadays rapid population growth causes a mandatory increase in consumption. As a result of production activities which meet this consumption, energy sources decrease rapidly on our world. As well as with this production activities various waste occurs. At the end of the production and accumulation of this waste need a mandatory disposal. In this context, copyrolysis of waste polyolefins were investigated. In this study for pyrolysis process, polyethylene and polyprophylene are selected as polyolefins. The pyrolysis behavior (efficiency of solid, liquid and gas production) of selected materials were examined at the different temperatures and different mixtures. Pyrolysis process was carried out at 550 °C and 600 °C without air in a fixed bed pyrolysis oven solid under the nitrogen flow to provide inertness of medium. Elemental analyses (C, H, O, N, S) of this solid and liquid (bitumen) products were made and the calorific value was calculated. The availability of liquid product as a fuel was investigated. In addition different products’ amounts formed like solid, liquid and gas at different temperatures were evaluated.

Keywords: alternative energy, elemental analysis, pyrolysis, waste reduction

Procedia PDF Downloads 296
12361 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates

Authors: R. Deju, M. Mincu, D. Gurau

Abstract:

During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.

Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management

Procedia PDF Downloads 226
12360 Generation of Waste Streams in Small Model Reactors

Authors: Sara Mostofian

Abstract:

The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.

Keywords: SMRs, activity transport, model, radioactive waste

Procedia PDF Downloads 84
12359 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste

Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde

Abstract:

Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.

Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)

Procedia PDF Downloads 289
12358 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh

Authors: Taif Rocky, Uttam Saha, Mahobul Islam

Abstract:

With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.

Keywords: kitchen waste, secondary town, biogas, segregation

Procedia PDF Downloads 204
12357 Method of Estimating Absolute Entropy of Municipal Solid Waste

Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards

Abstract:

Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3%  C 95.1%, 0.0%  H  14.3%, 0.0%  O  71.1%, 0.0  N  66.7%, 0.0%  S  42.1%, 0.0%  Cl  89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.

Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy

Procedia PDF Downloads 291
12356 Stabilization of Pb, Cr, Cd, Cu and Zn in Solid Waste and Sludge Pyrolysis by Modified Vermiculite

Authors: Yuxuan Yang, Zhaoping Zhong

Abstract:

Municipal solid waste and sludge are important sources of waste energy and their proper disposal is of great importance. Pyrolysis can fully decompose solid wastes and sludge, and the pyrolysis products (charcoal, oil and gas) have important recovery values. Due to the complex composition of solid wastes and sludge, the pyrolysis process at high temperatures is prone to heavy metal emissions, which are harmful to humans and the environment and reduce the safety of pyrolysis products. In this paper, heavy metal emissions during pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse at 450-650°C were investigated and the emissions and hazards of heavy metals (Pb, Cr, Cd, Cu and Zn) were effectively reduced by adding modified vermiculite as an additive. The vermiculite was modified by intercalation with cetyltrimethylammonium bromide, which resulted in more than twice the original layer spacing of the vermiculite. Afterward, the interpolated vermiculite was made into vermiculite flakes by exfoliation modification. After that, the expansion rate of vermiculite flakes was increased by Mg2+ modification and thermal activation. The expanded vermiculite flakes were acidified to improve the textural characteristics of the vermiculite. The modified vermiculite was analysed by XRD, FT-IR, BET and SEM to clarify the modification effect. The incorporation of modified vermiculite resulted in more than 80% retention of all heavy metals at 450°C. Cr, Cu and Zn were better retained than Pb and Cd. The incorporation of modified vermiculite effectively reduced the risk of heavy metals, and all risks were low for Pb, Cr, Cu and Zn. The toxicity of all heavy metals was greatly reduced by the incorporation of modified vermiculite and the morphology of heavy metals was transformed from Exchangeable and acid-soluble (F1) and Reducible (F2) to Oxidizable (F3) and Residual (F4). In addition, the increase in temperature favored the stabilization of heavy metal forms. This study provides a new insight into the cleaner use of energy and the safe management of solid waste.

Keywords: heavy metal, pyrolysis, vermiculite, solid waste

Procedia PDF Downloads 49
12355 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle

Procedia PDF Downloads 226
12354 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques

Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti

Abstract:

In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.

Keywords: isolation, solubility, starch, swelling, ultrasound

Procedia PDF Downloads 32
12353 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State

Authors: Nwanneka Mmonwuba

Abstract:

Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.

Keywords: solid waste, groundwater, disposal, dumpsite

Procedia PDF Downloads 32
12352 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects

Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho

Abstract:

This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.

Keywords: pretreatment, sewage, solid waste, wastewater

Procedia PDF Downloads 445