Search results for: density measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5876

Search results for: density measurement

5396 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures

Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu

Abstract:

The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.

Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction

Procedia PDF Downloads 145
5395 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: finite element method, flux density, transformer, voltage gradient

Procedia PDF Downloads 263
5394 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 69
5393 Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method

Authors: Rekab Djabri Hamza, Daoud Salah

Abstract:

We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation.

Keywords: LDA, phase transition, properties, DFT

Procedia PDF Downloads 96
5392 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters

Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea

Abstract:

Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.

Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density

Procedia PDF Downloads 152
5391 The Corrosion Resistance of P/M Alumix 431D Compacts

Authors: J. Kazior, A. Szewczyk-Nykiel, T. Pieczonka, M. Laska

Abstract:

Aluminium alloys are an important class of engineering materials for structural applications. This is due to the fact that these alloys have many interesting properties, namely, low density, high ratio of strength to density, good thermal and electrical conductivity, good corrosion resistance as well as extensive capabilities for shaping processes. In case of classical PM technology a particular attention should be paid to the selection of appropriate parameters of compacting and sintering processes and to keeping them. The latter need arises from the high sensitivity of aluminium based alloy powders on any fluctuation of technological parameters, in particular those related to the temperature-time profile and gas flow. Only then the desired sintered compacts with residual porosity may be produced. Except high mechanical properties, the other profitable properties of almost fully dense sintered components could be expected. Among them is corrosion resistance, rarely investigated on PM aluminium alloys. Thus, in the current study the Alumix 431/D commercial, press-ready grade powder was used for this purpose. Sintered compacts made of it in different conditions (isothermal sintering temperature, gas flow rate) were subjected to corrosion experiments in 0,1 M and 0,5 M NaCl solutions. The potentiodynamic curves were used to establish parameters characterising the corrosion resistance of sintered Alumix 431/D powder, namely, the corrosion potential, the corrosion current density, the polarization resistance, the breakdown potential. The highest value of polarization resistance, the lowest value of corrosion current density and the most positive corrosion potential was obtained for Alumix431/D powder sintered at 600°C and for highest protective gas flow rate.

Keywords: aluminium alloys, sintering, corrosion resistance, industry

Procedia PDF Downloads 330
5390 Vibrancy in The City: The Problem of Sidi-Gaber Station Zone in Alexandria, Egypt

Authors: Gihan Mosaad, Bakr Gomaa, Rana Elbadri

Abstract:

Modern parts of Alexandria city lack in vibrancy, causing a number of problems such as urban areas with poor security measures as well as weak economic state. Vibrancy provides a livable, attractive and secure environments; it also boosts the city’s economy and social life. Vibrant city is a city full of energy and life. To achieve this, a number of resources are needed; namely specific urban density, the availability of alternative modes of transportation and finally diversity of land-uses. Literature review shows no comprehensive study that assesses vibrancy in the streets of modern Alexandria. This study aims to measure the vibrancy potential in Sidi-Gaber station area thought the assessment of existing resources performance. Methods include literature reviews, surveying of existing case, questionnaire as well as GIS techniques. Expected results include GIS maps defining the vibrancy potentials in land use, density and statistical study regarding public transportation use in the area.

Keywords: Alexandria, density, mixed use, transportation, vibrancy

Procedia PDF Downloads 273
5389 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core

Authors: H. E. Ferrari, R. Farengo, C. F. Clauser

Abstract:

Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.

Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics

Procedia PDF Downloads 160
5388 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis

Procedia PDF Downloads 202
5387 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 36
5386 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 237
5385 Study of the Transport of Multivalent Metal Cations Through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón

Abstract:

In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.

Keywords: ion-exchange membranes, Electrochemical Impedance Spectrocopy, multivalent metal cations, membrane system

Procedia PDF Downloads 516
5384 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer

Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang

Abstract:

In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.

Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction

Procedia PDF Downloads 224
5383 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations

Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu

Abstract:

Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.

Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated

Procedia PDF Downloads 350
5382 Study on Concentration and Temperature Measurement with 760 nm Diode Laser in Combustion System Using Tunable Diode Laser Absorption Spectroscopy

Authors: Miyeon Yoo, Sewon Kim, Changyeop Lee

Abstract:

It is important to measure the internal temperature or temperature distribution precisely in combustion system to increase energy efficiency and reduce the pollutants. Especially in case of large combustion systems such as power plant boiler and reheating furnace of steel making process, it is very difficult to measure those physical properties in detail. Tunable diode laser absorption spectroscopy measurement and analysis can be attractive method to overcome the difficulty. In this paper, TDLAS methods are used to measure the oxygen concentration and temperature distribution in various experimental conditions.

Keywords: tunable diode laser absorption Spectroscopy, temperature distribution, gas concentration

Procedia PDF Downloads 371
5381 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance

Authors: Saiyed M Ishtiaque, Priyal Dixit

Abstract:

Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.

Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop

Procedia PDF Downloads 56
5380 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 114
5379 Spin Resolved Electronic Behavior of Zno Nanoribbons

Authors: Serkan Caliskan

Abstract:

The aim of this study is to understand the spin-resolved properties of ZnO armchair and zigzag nanoribbons. The spin polarization can be induced by either geometry of the nanoribbons or ferromagnetic electrodes. Hence, spin-dependent behavior is revealed in these nanostructures in the absence of external magnetic field. Both electronic structure and magnetic properties of the nanoribbons are analyzed, employing first-principles calculations through Density Functional Theory. The relevant properties using the spin-dependent band structure, conductance, transmission, density of states and magnetic moment are elucidated. These results can be utilized to describe the nanoscale structures and stimulate the experimental works.

Keywords: first principles, spin polarized transport, ZnO device, ZnO nanoribbons

Procedia PDF Downloads 174
5378 A Study of Stress and Coping Strategies of School Teachers

Authors: G.S. Patel

Abstract:

In this research paper the discussion have been made on teachers work mental stress and coping strategies. Stress Measurement scale was developed for school teachers. All the scientific steps of test construction was followed. For this test construction, different factors like teachers workplace, teachers' residential area, teachers' family life, teachers' ability and skills, economic factors and other factors to construct teachers stress measurement scale. In this research tool, situational statements have been made and teachers have to give a response in each statement on five-point rating scale what they experienced in their daily life. Special features of the test also established like validity and reliability of this test and also computed norms for its interpretation. A sample of 320 teachers of school teachers of Gujarat state was selected by Cluster sampling technique. t-test was computed for testing null hypothesis. The main findings of the present study are Urban area teachers feel more stressful situation compare to rural area teachers. Those teachers who live in the joint family feel less stress compare to teachers who live in a nuclear family. This research work is very useful to prepare list of activities to reduce teachers mental stress.

Keywords: stress measurement scale, level of stress, validity, reliability, norms

Procedia PDF Downloads 175
5377 Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy

Authors: Elena B. Cherepetskaya, Alexander A.Karabutov, Vladimir A. Makarov, Elena A. Mironova, Ivan A. Shibaev

Abstract:

In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined.

Keywords: laser ultrasonic testing , local elastic moduli, shear wave velocity, shungit

Procedia PDF Downloads 290
5376 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: linear low density polyethylene, nanocomposite, organoclay, plasticizer

Procedia PDF Downloads 273
5375 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling

Authors: Shahriar Ghammamy, Maryam Gholipoor

Abstract:

Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.

Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction

Procedia PDF Downloads 382
5374 Physical Characteristics of Locally Composts Produced in Saudi Arabia and the Need for Regulations

Authors: Ahmad Al-Turki

Abstract:

Composting is the suitable way of recycling organic waste for agricultural application and environment protection. In Saudi Arabia, several composting facilities are available and producing high quantity of composts. The aim of this study is to evaluate the physical characteristics of composts manufactured in Saudi Arabia and acquire a comprehensive image of its quality through the comparative with international standards of compost quality such as CCQC and PAS-100. In the present study different locally produced compost were identified and most of the producing factories were visited during the manufacturing of composts. Representative samples of different compost production stage were collected and Physical characteristics were determined, which included moisture content, bulk density, percentage of sand and the size of distribution of the compost particles. Results showed wide variations in all parameters investigated. Results of the study indicated generally that there is a wide variation in the physical characteristics of the types of compost under study. The initial moister contents in composts were generally low, it was less than 60% in most samples and not sufficient for microbial activities for biodegradation in 96% of the 96% of the types of compost and this will impede the decomposition of organic materials. The initial bulk density values ranged from 117 gL-1 to 1110.0 gL-1, while the final apparent bulk density ranged from 340.0 gL-1 to 1000gL-1 and about 45.4 % did not meet the ideal bulk density value. Sand percents in composts were between 3.3 % and 12.5%. This study has confirmed the need for a standard specification for compost manufactured in Saudi Arabia for agricultural use based on international standards for compost and soil characteristics and climatic conditions in Saudi Arabia.

Keywords: compost, maturity, Saudi Arabia, organic material

Procedia PDF Downloads 328
5373 Reliability of Social Support Measurement Modification of the BC-SSAS among Women with Breast Cancer Who Undergone Chemotherapy in Selected Hospital, Central Java, Indonesia

Authors: R. R. Dewi Rahmawaty Aktyani Putri, Earmporn Thongkrajai, Dedy Purwito

Abstract:

There were many instruments have been developed to assess social support which has the different dimension in breast cancer patients. The Issue of measurement is a challenge to determining the component of dimensional concept, defining the unit of measurement, and establishing the validity and reliability of the measurement. However, the instruments where need to know how much support which obtained and perceived among women with breast cancer who undergone chemotherapy which it can help nurses to prevent of non-adherence in chemotherapy. This study aimed to measure the reliability of BC-SSAS instrument among 30 Indonesian women with breast cancer aged 18 years and above who undergone chemotherapy for six cycles in the oncological unit of Outpatient Department (OPD), Margono Soekardjo Hospital, Central Java, Indonesia. Data were collected during October to December 2015 by using modified the Breast Cancer Social Support Assessment (BC-SSAS). The Cronbach’s alpha analysis was carried out to measure internal consistency for reliability test of BC-SSAS instrument. This study used five experts for content validity index. The results showed that for content validity, I-CVI was 0.98 and S-CVI was 0.98; Cronbach’s alpha value was 0.971 and the Cronbach’s alpha coefficients for the subscales were high, with 0.903 for emotional support, 0.865 for informational support, 0.901 for tangible support, 0.897 for appraisal support and 0.884 for positive interaction support. The results confirmed that the BC-SSAS instrument has high reliability. BC-SSAS instruments were reliable and can be used in health care services to measure the social support received and perceived among women with breast cancer who undergone chemotherapy so that preventive interventions can be developed and the quality of health services can be improved.

Keywords: BC-SSAS, women with breast cancer, chemotherapy, Indonesia

Procedia PDF Downloads 351
5372 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data

Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere

Abstract:

A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.

Keywords: charge carrier density, nano materials, new technique, thermionic emission

Procedia PDF Downloads 304
5371 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 306
5370 Severe Bone Marrow Edema on Sacroiliac Joint MRI Increases the Risk of Low BMD in Patients with Axial Spondyloarthritis

Authors: Kwi Young Kang

Abstract:

Objective: To determine the association between inflammatory and structural lesions on sacroiliac joint (SIJ) MRI and BMD and to identify risk factors for low BMD in patients with axial spondyloarthritis (axSpA). Methods: Seventy-six patients who fulfilled the ASAS axSpA criteria were enrolled. All underwent SIJ MRI and BMD measurement at the lumbar spine, femoral neck, and total hip. Inflammatory and structural lesions on SIJ MRI were scored. Laboratory tests and assessment of radiographic and disease activity were performed at the time of MRI. The association between SIJ MRI findings and BMD was evaluated. Results: Among the 76 patients, 14 (18%) had low BMD. Patients with low BMD showed significantly higher bone marrow edema (BME) and deep BME scores on MRI than those with normal BMD (p<0.047 and 0.007, respectively). Inflammatory lesions on SIJ MRI correlated with BMD at the femoral neck and total hip. Multivariate analysis identified the presence of deep BME on SIJ MRI, increased CRP, and sacroiliitis on X-ray as risk factors for low BMD (OR: 5.6, 14.6, and 2.5, respectively). Conclusion: The presence of deep BME on SIJ MRI, increased CRP levels, and severity of sacroiliitis on X-ray were independent risk factors for low BMD.

Keywords: axial spondyloarthritis, sacroiliac joint MRI, bone mineral density, sacroiliitis

Procedia PDF Downloads 519
5369 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 199
5368 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 160
5367 An Efficiency Measurement of E-Government Performance for United Nation Ranking Index

Authors: Yassine Jadi, Lin Jie

Abstract:

In order to serve the society in an electronic manner, many developing countries have launched tremendous e-government projects. The strategies of development and implementation e-government system have reached different levels, and to ensure consistency of development, the governments need to evaluate e-government performance. The United nation has design e-government development ranking index (EGDI) that rely on three indexes, Online service index (OSI), Telecommunication Infrastructure index (TII), and human capital index( HCI) which are not reflecting the interaction between a government and their citizens. Based on data envelopment analyses (DEA) technique, we are using E-participating index (EPI) as an output of government effort to evaluate the performance of e-government system. Therefore, the ranking index can be achieved in efficiency manner.

Keywords: e-government, DEA, efficiency measurement, EGDI

Procedia PDF Downloads 363