Search results for: count data
25079 Bacteriological Quality and Physicochemical Water Beaches of the City of Annaba (Mediterranean Sea)
Authors: Wahiba Boudraa, Farah Chettibbi, Meriem Aberkane, Fatma Djamaa, Moussa Houhamdi
Abstract:
The intensity of human activities in regions surrounding the Mediterranean Sea always has a strong long-term environmental impact resulting in coastal and marine degradation, as well as an aggravated risk of more serious damage. The available data on water quality show that most water resources in Algeria are polluted by uncontrolled discharges from municipal sewage and untreated industrial effluents. Annaba is a coastal town in Algeria; The Gulf of Annaba, responds to these changes as it receives the continental inputs and urban waste, industrial without prior treatment of a highly industrialized and urbanized city, subject to the same environmental problems that know the rest of the Algerian coast. In later year, the beaches of bacterial enumeration process waters showed relatively high levels of bacterial indicators of fecal contamination (group D streptococci, total and fecal coliforms), which reflect the risks to people attending these beaches. During the twelve months of our study, we isolated from three beaches in the city of Annaba (St. Cloud, El-Kettara, and Djenane El Bey) a number of pathogenic microorganisms considered, namely: Salmonella, Aeromonas, Citrobacter, Yersinia, Enterococcus, and E.coli. The microbial count revealed elevated levels of coliform bacteria, fecal coliforms and fecal streptococci quite high especially in urban beaches (St. Cloud and El-Kettara). They are widely popular during the summer by many vacationers. For the physico-chemical parameters, there exist some weak values which increase during the pluvial period, hivernal and festival saison. These values remain, nevertheless, weak to be able to cause an organic or metallic pollution.Keywords: quality microbiology, pollution of water, fecal contamination, physico-chemistry, beaches of Annaba city, Algeria.
Procedia PDF Downloads 34525078 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 8825077 An Examination on How Poetry Linguistic Elements Predict Trait Mindfulness
Authors: Crystal Jewell
Abstract:
Substantial evidence suggests a link exists between trait or dispositional mindfulness and creativity. While most studies on the mindfulness-creativity link focus on measures of divergent thinking, no study to date has explored the link through the lens of poetry writing. Thus, the present study sought to examine the relation between mindfulness and poetry through various linguistic elements, including word count, references to the self versus references to the collective, and frequency of past-, present-, and future-tense verb usage. Following a questionnaire on demographics, university undergraduates at a United States college completed a survey measuring trait mindfulness, then engaged in a two-part associated poetry-writing task intended to mimic writing tasks used to counter writer’s block. Results indicated no significant relations among any measures of poetry linguistic elements and trait mindfulness, as well as the facets of trait mindfulness. Limitations and future directions call for replication of results and further examination of different poetry linguistic elements.Keywords: mindfulness, poetry, linguistics, psychology
Procedia PDF Downloads 8125076 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 55825075 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease
Authors: Usama Ahmed
Abstract:
Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.Keywords: data mining, classification, diabetes, WEKA
Procedia PDF Downloads 14725074 Hematological Profiles of Visceral Leishmaniasis Patients before and after Treatment of Anti-Leishmanial Drugs at University of Gondar Leishmania Research and Treatment Center Northwest, Ethiopia
Authors: Fitsumbrhan Tajebe, Fadil Murad, Mitikie Tigabie, Mareye Abebaw, Tadele Alemu, Sefanit Abate, Rezika Mohammedw, Arega Yeshanew, Elias Shiferaw
Abstract:
Background: Visceral leshimaniasis is a parasitic disease characterized by a systemic infection of phagocytic cells. Hematological parameters of these patients may be affected by the progress of the disease or treatment. Thus, the current study aimed to assess the hematological profiles of visceral leishmaniasis patients before and after treatment. Method: An institutional based retrospective cohort study was conducted among visceral leishmaniasis patients at University of Gondar Comprehensive Specialized Referral Hospital Leishmaniasis Research and Treatment Center from 2013 to 2018. Hematological profiles before initiation and after completion of treatment were extracted from registration book. Descriptive statics was presented using frequency and percentage. Paired t-test and Wilcoxon Signed rank test were used for comparing mean difference for normally and non- normally distributed data, respectively. Spearman and Pearson correlation analysis was used to describe the correlation of hematological parameters with different variables. P value < 0.05 was considered as statistically significant. Result: Except absolute nerutrophil count, post treatment hematological parameters show a significant increment compared to pretreatment one. The prevalence of anemia, leucopenia and thrombocytopenia was 85.5%, 83.4% and 75.8% prior to treatment and it was 58.3%, 38.2% and 19.2% after treatment, respectively. Moreover, parasite load of the disease showed statistically significant negative correlation with hematological profiles mainly with white blood cell and red blood cell. Conclusion: Majority of hematological profiles of patients with active VL have been restored after treatment, which might be associated with treatment effect on parasite proliferation and concentration of parasite in visceral organ, which directly affect hematological profiles.Keywords: visceral leshimaniasis, hematological profile, anti-leshimanial drug, Gondar
Procedia PDF Downloads 12825073 Evaluation of Bacterial Composition of the Aerosol of Selected Abattoirs in Akure, South Western Nigeria
Authors: Funmilola O. Omoya, Joseph O. Obameso, Titus A. Olukibiti
Abstract:
This study was carried out to reveal the bacterial composition of aerosol in the studied abattoirs. Bacteria isolated were characterized according to microbiological standards. Factors such as temperature and distance were considered as variable in this study. The isolation was carried out at different temperatures such as 27oC, 31oC and 29oC and at various distances of 100meters and 200meters away from the slaughter sites. Result obtained showed that strains of Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Lactobacillus alimentarius and Micrococcus sp. were identified. The total viable counts showed that more microorganisms were present in the morning while the least viable count of 388 cfu was recorded in the evening period of this study. This study also showed that more microbial loads were recorded the further the distance is to the slaughter site. Conclusively, the array of bacteria isolated suggests that abattoir sites may be a potential source of pathogenic organisms to commuters if located within residential environment.Keywords: abattoir, aerosol, bacterial composition, environment
Procedia PDF Downloads 25325072 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 8225071 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27325070 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 19525069 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4425068 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 6825067 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41225066 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 25725065 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13525064 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13525063 Hyper-Immunoglobulin E (Hyper-Ige) Syndrome In Skin Of Color: A Retrospective Single-Centre Observational Study
Authors: Rohit Kothari, Muneer Mohamed, Vivekanandh K., Sunmeet Sandhu, Preema Sinha, Anuj Bhatnagar
Abstract:
Introduction: Hyper-IgE syndrome is a rare primary immunodeficiency syndrome characterised by triad of severe atopic dermatitis, recurrent pulmonary infections, and recurrent staphylococcal skin infections. The diagnosis requires a high degree of suspicion, typical clinical features, and not mere rise in serum-IgE levels, which may be seen in multiple conditions. Genetic studies are not always possible in a resource poor setting. This study highlights various presentations of Hyper-IgE syndrome in skin of color children. Case-series: Our study had six children of Hyper-IgE syndrome aged twomonths to tenyears. All had onset in first ten months of life except one with a late-onset at two years. All had recurrent eczematoid rash, which responded poorly to conventional treatment, secondary infection, multiple episodes of hospitalisation for pulmonary infection, and raised serum IgE levels. One case had occasional vesicles, bullae, and crusted plaques over both the extremities. Genetic study was possible in only one of them who was found to have pathogenic homozygous deletions of exon-15 to 18 in DOCK8 gene following which he underwent bone marrow transplant (BMT), however, succumbed to lower respiratory tract infection two months after BMT and rest of them received multiple courses of antibiotics, oral/ topical steroids, and cyclosporine intermittently with variable response. Discussion: Our study highlights various characteristics, presentation, and management of this rare syndrome in children. Knowledge of these manifestations in skin of color will facilitate early identification and contribute to optimal care of the patients as representative data on the same is limited in literature.Keywords: absolute eosinophil count, atopic dermatitis, eczematous rash, hyper-immunoglobulin E syndrome, pulmonary infection, serum IgE, skin of color
Procedia PDF Downloads 13825062 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43725061 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9325060 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 15725059 Analysis of Population and Growth Rate Methanotof Bateria as Reducers Methane Gases Emission in Rice Field
Authors: Maimuna Nontji
Abstract:
The life cycle of rice plant has three phases of growth; they are the vegetative, reproductive and maturation phase. They greatly affect the life of dynamics metanotrof bacterial as reducer methane emissions in the rice field, both of population and on the rate of growth. The aim of this study was to analyze the population and growth rate of methanotrof isolates which has been isolated in previous studies. Isolates were taken at all the life cycle of rice plant. Population of analysis was conducted by standard plate count method and growth rate was analysed by logarithmic calculation. The results showed that each isolate varied in population and growth rate. The highest population was obtained in the isolates Gowa Methanotrof Reproductive (GMR 8) about 7.06 x 10 11 cfu / ml on 3 days of incubation and the lowest population was obtained in the Gowa Methanotrof Maturation (GMP 5) about 0.27 x 10 11 cfu / ml on 7 day of incubation. Some isolate were demonstrated in long growth rate about 5 days of incubation and another are 3 days.Keywords: emission, methanotrof, methane, population
Procedia PDF Downloads 44925058 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35325057 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 18925056 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24625055 Tracing Back the Bot Master
Authors: Sneha Leslie
Abstract:
The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.Keywords: bonet, DDoS attack, network security, detection system, metasploit framework
Procedia PDF Downloads 25425054 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 14325053 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming
Authors: Milind Chaudhari, Suhail Balasinor
Abstract:
Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.Keywords: big data, IoT, vertical farming, indoor farming
Procedia PDF Downloads 17525052 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt
Authors: A. Anis, W. Bekheet, A. El Hakim
Abstract:
Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.Keywords: road safety management system, road crash, road fatality, road injury
Procedia PDF Downloads 14625051 Contribution of Football Club Jerseys towards English Premier League Fans’ Loyalty in Nigeria
Authors: B. O. Diyaolu
Abstract:
The globalization of football especially among youth over the decade is uprising. Nigeria youth displaying football jerseys at every opportunity is an acceptance of football globalization. The Love for English Premier League (EPL) football jersey is very strong among Nigeria fans. Football club jerseys of the EPL are a common sports product among fans in Nigeria. This study investigates the contribution of football club jerseys towards EPL fans’ loyalty in Nigeria. Descriptive survey research design was used for the study. The population consists of EPL fans in Nigeria. Simple random sampling technique (fish bowl without replacement) was used to select two states from the six geo-political zones. Purposive sampling technique was used to pick eight viewing centres while accidental sampling technique was used to pick five vendor stands from each State. An average of 250 respondents was selected from each state. A total of 3,200 respondents participated in the research. Two research instruments were used. A self-developed structured questionnaire on Football Jersey Scale (FJS): The instrument consists of 10 items. Fans Loyalty Scale (FLS): The instrument was modified from the psychological commitment to team (PCT) scale, and consists of 20 items. The Cronbach’s Alpha reliability coefficient of 0.72 and 0.75 was obtained, respectively. The hypothesis was tested at 0.05 significant levels. Data were analysed using frequency, percentages count, pie chart and multiple regressions. The result showed that the b-value of football club jersey is 0.148 also the standard regression coefficient (Beta) is 0.089. The t = 4.759 is statistically significant at p = 0.000. This signified a relative contribution of football club jersey on EPL fans loyalty in Nigeria. Club jersey, which is the most outstanding identifier of every club, was found to significantly predict loyalty. The jersey on the body of the fan has become the site for a declaration of loyalty which becomes available for social interaction and negotiation. The Nigerian local league clubs in an attempt to keep Nigerian fans loyal must borrow a leaf from their European counterparts.Keywords: club Jerseys, English Premier League, football fans, Nigeria youth
Procedia PDF Downloads 25625050 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 490