Search results for: computational imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3266

Search results for: computational imaging

2786 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System

Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano

Abstract:

The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.

Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers

Procedia PDF Downloads 326
2785 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: finite element method, growth, residual stress, soft tissue

Procedia PDF Downloads 270
2784 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times

Authors: Ali Allahverdi

Abstract:

The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.

Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan

Procedia PDF Downloads 340
2783 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
2782 The Great Mimicker: A Case of Disseminated Tuberculosis

Authors: W. Ling, Mohamed Saufi Bin Awang

Abstract:

Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment.

Keywords: central nervous system tuberculosis, intracranial tuberculosis, tuberculous encephalopathy, tuberculous meningitis

Procedia PDF Downloads 189
2781 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke

Authors: Alireza Rafie Boldaji, Ahmad Saboonchi

Abstract:

Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.

Keywords: CFD, two-phase, choke, critical

Procedia PDF Downloads 277
2780 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 177
2779 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes

Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka

Abstract:

Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.

Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering

Procedia PDF Downloads 301
2778 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 18
2777 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties

Authors: Mahnoosh Aliahmadi, Akbar Esmaeili

Abstract:

This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.

Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium

Procedia PDF Downloads 80
2776 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 93
2775 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 91
2774 Iterative Reconstruction Techniques as a Dose Reduction Tool in Pediatric Computed Tomography Imaging: A Phantom Study

Authors: Ajit Brindhaban

Abstract:

Background and Purpose: Computed Tomography (CT) scans have become the largest source of radiation in radiological imaging. The purpose of this study was to compare the quality of pediatric Computed Tomography (CT) images reconstructed using Filtered Back Projection (FBP) with images reconstructed using different strengths of Iterative Reconstruction (IR) technique, and to perform a feasibility study to assess the use of IR techniques as a dose reduction tool. Materials and Methods: An anthropomorphic phantom representing a 5-year old child was scanned, in two stages, using a Siemens Somatom CT unit. In stage one, scans of the head, chest and abdomen were performed using standard protocols recommended by the scanner manufacturer. Images were reconstructed using FBP and 5 different strengths of IR. Contrast-to-Noise Ratios (CNR) were calculated from average CT number and its standard deviation measured in regions of interest created in the lungs, bone, and soft tissues regions of the phantom. Paired t-test and the one-way ANOVA were used to compare the CNR from FBP images with IR images, at p = 0.05 level. The lowest strength value of IR that produced the highest CNR was identified. In the second stage, scans of the head was performed with decreased mA(s) values relative to the increase in CNR compared to the standard FBP protocol. CNR values were compared in this stage using Paired t-test at p = 0.05 level. Results: Images reconstructed using IR technique had higher CNR values (p < 0.01.) in all regions compared to the FBP images, at all strengths of IR. The CNR increased with increasing IR strength of up to 3, in the head and chest images. Increases beyond this strength were insignificant. In abdomen images, CNR continued to increase up to strength 5. The results also indicated that, IR techniques improve CNR by a up to factor of 1.5. Based on the CNR values at strength 3 of IR images and CNR values of FBP images, a reduction in mA(s) of about 20% was identified. The images of the head acquired at 20% reduced mA(s) and reconstructed using IR at strength 3, had similar CNR as FBP images at standard mA(s). In the head scans of the phantom used in this study, it was demonstrated that similar CNR can be achieved even when the mA(s) is reduced by about 20% if IR technique with strength of 3 is used for reconstruction. Conclusions: The IR technique produced better image quality at all strengths of IR in comparison to FBP. IR technique can provide approximately 20% dose reduction in pediatric head CT while maintaining the same image quality as FBP technique.

Keywords: filtered back projection, image quality, iterative reconstruction, pediatric computed tomography imaging

Procedia PDF Downloads 148
2773 Gallbladder Amyloidosis Causing Gangrenous Cholecystitis: A Case Report

Authors: Christopher Leung, Guillermo Becerril-Martinez

Abstract:

Amyloidosis is a rare systemic disease where abnormal proteins invade various organs and impede their function. Occasionally, they can manifest in a solidary organ such as the heart, lung, and nervous systems; rarely do they manifest in the gallbladder. Diagnosis often requires biopsy of the affected area and histopathology shows deposition of abnormally folded globular proteins called amyloid proteins. This case presents a 69-year-old male with a 3-month history of RUQ pain, diarrhea and non-specific symptoms of tiredness, etc. On imaging, both his US and CT abdomen showed gallbladder wall thickening and pericholecystic fluid, which may represent acute cholecystitis with hypodense lesions around the gallbladder, possibly representing liver abscesses. Given his symptoms of abdominal pain and imaging findings, this gentleman eventually had a laparoscopic cholecystectomy showing a gangrenous gallbladder with a mass on the liver bed. On histopathology, it showed amorphous hyaline eosinophilic material, which Congo-stained confirmed amyloidosis. Amyloidosis explained his non-specific symptoms, he avoided further biopsy, and he was commenced immediately on Lenalidomide. Involvement of the gallbladder is extremely rare, with less than 30 cases around the world. Half of the cases are reported as primary amyloidosis. This case adds to the current literature regarding primary gallbladder amyloidosis. Importantly, this case highlights how laparoscopic cholecystectomy can help with the diagnosis of gallbladder amyloidosis.

Keywords: amyloidosis, cholecystitis, gangrenous cholecystitis, gallbladder, systemic amyloidosis

Procedia PDF Downloads 207
2772 Identification and Management of Septic Arthritis of the Untouched Glenohumeral Joint

Authors: Sumit Kanwar, Manisha Chand, Gregory Gilot

Abstract:

Background: Septic arthritis of the shoulder has infrequently been discussed. Focus on infection of the untouched shoulder has not heretofore been described. We present four patients with glenohumeral septic arthritis. Methods: Case 1: A 59 year old male with left shoulder pain in the anterior, posterior and superior aspects. Case 2: A 60 year old male with fever, chills, and generalized muscle aches. Case 3: A 70 year old male with right shoulder pain about the anterior and posterior aspects. Case 4: A 55 year old male with global right shoulder pain, swelling, and limited ROM. Results: In case 1, the left shoulder was affected. Physical examination, swelling was notable, there was global tenderness with a painful range of motion (ROM). The lab values indicated an erythrocyte sedimentation rate (ESR) of 96, and a C-reactive protein (CRP) of 304.30. Imaging studies were performed and MRI indicated a high suspicion for an abscess with osteomyelitis of the humeral head. Our second case’s left arm was affected. He had swelling, global tenderness and painful ROM. His ESR was 38, CRP was 14.9. X-ray showed severe arthritis. Case 3 differed with the right arm being affected. Again, global tenderness and painful ROM was observed. His ESR was 94, and CRP was 10.6. X-ray displayed an eroded glenoid space. Our fourth case’s right shoulder was affected. He had global tenderness and painful, limited ROM. ESR was 108 and CRP was 2.4. X-ray was non-significant. Discussion: Monoarticular septic arthritis of the virgin glenohumeral joint is seldom diagnosed in clinical practice. Common denominators include elevated ESR, painful, limited ROM, and involvement of the dominant arm. The male population is more frequently affected with an average age of 57. Septic arthritis is managed with incision and drainage or needle aspiration of synovial fluid supplemented with 3-6 weeks of intravenous antibiotics. Due to better irrigation and joint visualization, arthroscopy is preferred. Open surgical drainage may be indicated if the above methods fail. Conclusion: If a middle-aged male presents with vague anterior or posterior shoulder pain, elevated inflammatory markers and a low grade fever, an x-ray should be performed. If this displays degenerative joint disease, the complete further workup with advanced imaging, such as an MRI, CT scan, or an ultrasound. If these imaging modalities display anterior space joint effusion with soft tissue involvement, we can suspect septic arthritis of the untouched glenohumeral joint and surgery is indicated.

Keywords: glenohumeral joint, identification, infection, septic arthritis, shoulder

Procedia PDF Downloads 422
2771 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
2770 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 592
2769 Rethinking the Value of Pancreatic Cyst CEA Levels from Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA): A Longitudinal Analysis

Authors: Giselle Tran, Ralitza Parina, Phuong T. Nguyen

Abstract:

Background/Aims: Pancreatic cysts (PC) have recently become an increasingly common entity, often diagnosed as incidental findings on cross-sectional imaging. Clinically, management of the lesions is difficult because of uncertainties in their potential for malignant degeneration. Prior series have reported that carcinoembryonic antigen (CEA), a biomarker collected from cyst fluid aspiration, has a high diagnostic accuracy for discriminating between mucinous and non-mucinous lesions, at the patient’s initial presentation. To the author’s best knowledge, no prior studies have reported PC CEA levels obtained from endoscopic ultrasound fine-needle aspiration (EUS-FNA) over years of serial EUS surveillance imaging. Methods: We report a consecutive retrospective series of 624 patients who underwent EUS evaluation for a PC between 11/20/2009 and 11/13/2018. Of these patients, 401 patients had CEA values obtained at the point of entry. Of these, 157 patients had two or more CEA values obtained over the course of their EUS surveillance. Of the 157 patients (96 F, 61 M; mean age 68 [range, 62-76]), the mean interval of EUS follow-up was 29.7 months [3.5-128]. The mean number of EUS procedures was 3 [2-7]. To assess CEA value fluctuations, we defined an appreciable increase in CEA as "spikes" – two-times increase in CEA on a subsequent EUS-FNA of the same cyst, with the second CEA value being greater than 1000 ng/mL. Using this definition, cysts with a spike in CEA were compared to those without a spike in a bivariate analysis to determine if a CEA spike is associated with poorer outcomes and the presence of high-risk features. Results: Of the 157 patients analyzed, 29 had a spike in CEA. Of these 29 patients, 5 had a cyst with size increase >0.5cm (p=0.93); 2 had a large cyst, >3cm (p=0.77); 1 had a cyst that developed a new solid component (p=0.03); 7 had a cyst with a solid component at any time during surveillance (p=0.08); 21 had a complex cyst (p=0.34); 4 had a cyst categorized as "Statistically Higher Risk" based on molecular analysis (p=0.11); and 0 underwent surgical resection (p=0.28). Conclusion: With serial EUS imaging in the surveillance of PC, an increase in CEA level defined as a spike did not predict poorer outcomes. Most notably, a spike in CEA did not correlate with the number of patients sent to surgery or patients with an appreciable increase in cyst size. A spike in CEA did not correlate with the development of a solid nodule within the PC nor progression on molecular analysis. Future studies should focus on the selected use of CEA analysis when patients undergo EUS surveillance evaluation for PCs.

Keywords: carcinoembryonic antigen (CEA), endoscopic ultrasound (EUS), fine-needle aspiration (FNA), pancreatic cyst, spike

Procedia PDF Downloads 142
2768 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
2767 Comparison of Dose Rate and Energy Dependence of Soft Tissue Equivalence Dosimeter with Electron and Photon Beams Using Magnetic Resonance Imaging

Authors: Bakhtiar Azadbakht, Karim Adinehvand, Amin Sahebnasagh

Abstract:

The purpose of this study was to evaluate dependence of PAGAT polymer gel dosimeter 1/T2 on different electron and photon energies as well as on different mean dose rates for a standard clinically used Co-60 therapy unit and an ELECTA linear accelerator. A multi echo sequence with 32 equidistant echoes was used for the evaluation of irradiated polymer gel dosimeters. The optimal post-manufacture irradiation and post imaging times were both determined to be one day. The sensitivity of PAGAT polymer gel dosimeter with irradiation of photon and electron beams was represented by the slope of calibration curve in the linear region measured for each modality. The response of PAGAT gel with photon and electron beams is very similar in the lower dose region. The R2-dose response was linear up to 30Gy. In electron beams the R2-dose response for doses less than 3Gy is not exact, but in photon beams the R2-dose response for doses less than 2Gy is not exact. Dosimeter energy dependence was studied for electron energies of 4, 12 and 18MeV and photon energies of 1.25, 4, 6 and 18MV. Dose rate dependence was studied in 6MeV electron beam and 6MV photon beam with the use of dose rates 80, 160, 240, 320, 400, and 480cGy/min. Evaluation of dosimeters were performed on Siemens Symphony, Germany 1.5T Scanner in the head coil. In this study no trend in polymer-gel dosimeter 1/T2 dependence was found on mean dose rate and energy for electron and photon beams.

Keywords: polymer gels, PAGAT gel, electron and photon beams, MRI

Procedia PDF Downloads 473
2766 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion

Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller

Abstract:

Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.

Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite

Procedia PDF Downloads 139
2765 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities

Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede

Abstract:

This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.

Keywords: computer science, learning experiences, self-efficacy, students

Procedia PDF Downloads 143
2764 Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents

Authors: Suhas Pednekar, Prashant Chavan, Ramesh Chaughule, Deepak Patkar

Abstract:

Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water.

Keywords: cancer drug, hydrodynamic size, magnetic nanoparticles, MRI

Procedia PDF Downloads 488
2763 A Computational Model of the Thermal Grill Illusion: Simulating the Perceived Pain Using Neuronal Activity in Pain-Sensitive Nerve Fibers

Authors: Subhankar Karmakar, Madhan Kumar Vasudevan, Manivannan Muniyandi

Abstract:

Thermal Grill Illusion (TGI) elicits a strong and often painful sensation of burn when interlacing warm and cold stimuli that are individually non-painful, excites thermoreceptors beneath the skin. Among several theories of TGI, the “disinhibition” theory is the most widely accepted in the literature. According to this theory, TGI is the result of the disinhibition or unmasking of the pain-sensitive HPC (Heat-Pinch-Cold) nerve fibers due to the inhibition of cold-sensitive nerve fibers that are responsible for masking HPC nerve fibers. Although researchers focused on understanding TGI throughexperiments and models, none of them investigated the prediction of TGI pain intensity through a computational model. Furthermore, the comparison of psychophysically perceived TGI intensity with neurophysiological models has not yet been studied. The prediction of pain intensity through a computational model of TGI can help inoptimizing thermal displays and understanding pathological conditions related to temperature perception. The current studyfocuses on developing a computational model to predict the intensity of TGI pain and experimentally observe the perceived TGI pain. The computational model is developed based on the disinhibition theory and by utilizing the existing popular models of warm and cold receptors in the skin. The model aims to predict the neuronal activity of the HPC nerve fibers. With a temperature-controlled thermal grill setup, fifteen participants (ten males and five females) were presented with five temperature differences between warm and cold grills (each repeated three times). All the participants rated the perceived TGI pain sensation on a scale of one to ten. For the range of temperature differences, the experimentally observed perceived intensity of TGI is compared with the neuronal activity of pain-sensitive HPC nerve fibers. The simulation results show a monotonically increasing relationship between the temperature differences and the neuronal activity of the HPC nerve fibers. Moreover, a similar monotonically increasing relationship is experimentally observed between temperature differences and the perceived TGI intensity. This shows the potential comparison of TGI pain intensity observed through the experimental study with the neuronal activity predicted through the model. The proposed model intends to bridge the theoretical understanding of the TGI and the experimental results obtained through psychophysics. Further studies in pain perception are needed to develop a more accurate version of the current model.

Keywords: thermal grill Illusion, computational modelling, simulation, psychophysics, haptics

Procedia PDF Downloads 171
2762 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 23
2761 Infrared Thermography as an Informative Tool in Energy Audit and Software Modelling of Historic Buildings: A Case Study of the Sheffield Cathedral

Authors: Ademuyiwa Agbonyin, Stamatis Zoras, Mohammad Zandi

Abstract:

This paper investigates the extent to which building energy modelling can be informed based on preliminary information provided by infrared thermography using a thermal imaging camera in a walkthrough audit. The case-study building is the Sheffield Cathedral, built in the early 1400s. Based on an informative qualitative report generated from the thermal images taken at the site, the regions showing significant heat loss are input into a computer model of the cathedral within the integrated environmental solution (IES) virtual environment software which performs an energy simulation to determine quantitative heat losses through the building envelope. Building data such as material thermal properties and building plans are provided by the architects, Thomas Ford and Partners Ltd. The results of the modelling revealed the portions of the building with the highest heat loss and these aligned with those suggested by the thermal camera. Retrofit options for the building are also considered, however, may not see implementation due to a desire to conserve the architectural heritage of the building. Results show that thermal imaging in a walk-through audit serves as a useful guide for the energy modelling process. Hand calculations were also performed to serve as a 'control' to estimate losses, providing a second set of data points of comparison.

Keywords: historic buildings, energy retrofit, thermal comfort, software modelling, energy modelling

Procedia PDF Downloads 170
2760 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.

Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater

Procedia PDF Downloads 634
2759 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model

Procedia PDF Downloads 467
2758 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 76
2757 CFD Modeling of Insect Flight at Low Reynolds Numbers

Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai

Abstract:

The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.

Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)

Procedia PDF Downloads 410