Search results for: climate chamber
2771 Water Management of Polish Agriculture and Adaptation to Climate Change
Authors: Dorota M. Michalak
Abstract:
The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.Keywords: water management, adaptation policy, agriculture, climate change
Procedia PDF Downloads 1402770 Long-Term Climate Patterns in Eastern and Southeastern Ethiopia
Authors: Messay Mulugeta, Degefa Tolossa
Abstract:
The purpose of this paper is to scrutinize trends of climate risks in eastern and southeastern parts of Ethiopia. This part of the country appears severely affected by recurrent droughts, erratic rainfall, and increasing temperature condition. Particularly, erratic rains and moisture stresses have been forcibly threatening and shoving the people over many decades coupled with unproductive policy frameworks and weak institutional setups. These menaces have been more severe in dry lowlands where rainfall is more erratic and scarce. Long-term climate data of nine weather stations in eastern and southeastern parts of Ethiopia were obtained from National Meteorological Agency of Ethiopia (NMA). As issues related to climate risks are very intricate, different techniques and indices were applied to deal with the objectives of the study. It is concluded that erratic rainfall, moisture scarcity, and increasing temperature conditions have been the main challenges in eastern and southeastern Ethiopia. In fact, these risks can be eased by putting in place efficient and integrated rural development strategies, environmental rehabilitation plans of action in overworked areas, proper irrigation and water harvesting practices and well thought-out and genuine resettlement schemes.Keywords: rainfall variability, erratic rains, precipitation concentration index (PCI), climatic pattern, Ethiopia
Procedia PDF Downloads 2372769 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model
Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle
Abstract:
In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model
Procedia PDF Downloads 1012768 Understanding Public Opinion about Environment Issue in Kedah (Malaysia)
Authors: Roozbeh Kardooni, Ahmad Hossein Meidari, Sumiani Binti Yusoff, Fatimah Binti Kari,
Abstract:
The public opinion on environmental issue was analyzed by means of a survey implemented in Kedah located in the northwestern part of Peninsular Malaysia (West Malaysia). This work explores public opinions regarding environmental issue such as climate change, green technology and renewable energy in Kedah. Probability sampling and a stratified technique were used to conduct a survey with subjects aged 20 years and over with higher education qualifications. The results shows that the level of concern regarding climate change in Kedah is high and majority of Kedah citizens are concerned about climate change and have heard about green technology. However, only 40% people in this city have used green products. The findings of this study also show that percent use of green products is highest among those who are familiar with such products. It is apparent from study finding that economic barriers and non-economic barriers both play a role in impeding the development of renewable energy policies in Kedah. This finding can be explained by the high price of renewable energy products, lack of knowledge about government policies, and ineffective programs and initiatives.Keywords: public opinion, climate change, green technology, Kedah
Procedia PDF Downloads 3812767 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India
Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar
Abstract:
This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies
Procedia PDF Downloads 4172766 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations
Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech
Abstract:
The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.Keywords: variability, climate change, Awash River Basin, precipitation
Procedia PDF Downloads 1722765 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators
Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang
Abstract:
High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.Keywords: electron guns, high voltage techniques, insulators, vacuum insulation
Procedia PDF Downloads 1122764 Potential Effects of Climate Change on Streamflow, Based on the Occurrence of Severe Floods in Kelantan, East Coasts of Peninsular Malaysia River Basin
Authors: Muhd. Barzani Gasim, Mohd. Ekhwan Toriman, Mohd. Khairul Amri Kamarudin, Azman Azid, Siti Humaira Haron, Muhammad Hafiz Md. Saad
Abstract:
Malaysia is a country in Southeast Asia that constantly exposed to flooding and landslide. The disaster has caused some troubles such loss of property, loss of life and discomfort of people involved. This problem occurs as a result of climate change leading to increased stream flow rate as a result of disruption to regional hydrological cycles. The aim of the study is to determine hydrologic processes in the east coasts of Peninsular Malaysia, especially in Kelantan Basin. Parameterized to account for the spatial and temporal variability of basin characteristics and their responses to climate variability. For hydrological modeling of the basin, the Soil and Water Assessment Tool (SWAT) model such as relief, soil type, and its use, and historical daily time series of climate and river flow rates are studied. The interpretation of Landsat map/land uses will be applied in this study. The combined of SWAT and climate models, the system will be predicted an increase in future scenario climate precipitation, increase in surface runoff, increase in recharge and increase in the total water yield. As a result, this model has successfully developed the basin analysis by demonstrating analyzing hydrographs visually, good estimates of minimum and maximum flows and severe floods observed during calibration and validation periods.Keywords: east coasts of Peninsular Malaysia, Kelantan river basin, minimum and maximum flows, severe floods, SWAT model
Procedia PDF Downloads 2612763 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib
Abstract:
Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.Keywords: climate change, pulses productivity, agriculture, Pakistan
Procedia PDF Downloads 422762 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria
Authors: Lujain Khraiba
Abstract:
Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces
Procedia PDF Downloads 4822761 Civil Engineering Tool Kit for Making Perfect Ellipses of Desired Dimensions on Very Large Surfaces
Authors: Karam Chand Gupta
Abstract:
If an ellipse is to be drawn of given dimensions on a large ground, there is no formula, method or set of calculations & procedure available which will help in drawing an ellipse of given length and width on ground. Whenever a field engineer is to start the work of an ellipse-shaped structure like elliptical conference hall, screening chamber and pump chamber in disposal work etc., it is cumbersome for him to give demarcation of the structure on the big surface of the ground. No procedure is available, even in Google. A set of formulas with calculations has been made which helps the field engineer to draw an true and perfect ellipse of given length and width on the large ground very easily so as to start the construction work of elliptical structure. Based on these formulas a civil Engineering tool kit has been made with the help of which we can make perfect ellipse of desired dimensions on very large surface. The Patent of the tool kit has been filed in Intellectual Property India with Patent Filing Number: 201611026153 and Patent Application Filing Date: 30.07.2016. An App named ‘KC’s Mesh Formula’ has also been made to ease the calculation work. This can be downloaded from Play Store. After adopting these formulas and tool kit, a field engineer will not face difficulty in drawing ellipse on the ground to start the work.Keywords: ellipse, elliptical structure, foci, string, wooden peg
Procedia PDF Downloads 2662760 Evaluation of Flow Alteration under Climate Change Scenarios for Disaster Risk Management in Lower Mekong Basin: A Case Study in Prek Thnot River in Cambodia
Authors: Vathanachannbo Veth, Ilan Ich, Sophea Rom Phy, Ty Sok, Layheang Song, Sophal Try, Chantha Oeurng
Abstract:
Climate change is one of the major global challenges inducing disaster risks and threatening livelihoods and communities through adverse impacts on food and water security, ecosystems, and services. Prek Thnot River Basin of Cambodia is one of the largest tributaries in the Lower Mekong that has been exposed to hazards and disasters, particularly floods and is said to be the effect of climate change. Therefore, the assessment of precipitation and streamflow changes under the effect of climate change was proposed in this river basin using Soil Water Assessment Tool (SWAT) model and different flow indices under baseline (1997 to 2011) and climate change scenarios (RCP2.6 and RCP8.5 with three General Circulation Models (GCMs): GFDL, GISS, and IPSL) in two time-horizons: near future (the 2030s: 2021 to 2040) and medium future (2060s: 2051 to 2070). Both intensity and frequency indices compared with the historical extreme rainfall indices significantly change in the GFDL under the RCP8.5 for both 2030s and 2060s. The average rate change of Rx1day, Rx10day, SDII, and R20mm in the 2030s and 2060s of both RCP2.6 and RCP8.5 was found to increase in GFDL and decrease in both GISS and IPSL. The mean percentage change of the flow analyzed in the IHA tool (Group1) indicated that the flow in the Prek Thnot River increased in GFDL for both RCP2.6 and RCP8.5 in both 2030s and 2060s, oppositely in GISS, the flow decreases. Moreover, the IPSL affected the flow by increasing in five months (January, February, October, November, and December), and in the other seven months, the flow decreased accordingly. This study provides water resources managers and policymakers with a wide range of precipitation and water flow projections within the Prek Thnot River Basin in the context of plausible climate change scenarios.Keywords: IHA, climate change, disaster risk, Prek Thnot River Basin, Cambodia
Procedia PDF Downloads 1002759 Climate Variability and Its Impacts on Rice (Oryza sativa) Productivity in Dass Local Government Area of Bauchi State, Nigeria
Authors: Auwal Garba, Rabiu Maijama’a, Abdullahi Muhammad Jalam
Abstract:
Variability in climate has affected the agricultural production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate variability is believed to have declining effects towards rice production in Nigeria. This study examined climate variability and its impact on rice productivity in Dass Local Government Area, Bauchi State, by employing Linear Trend Model (LTM), analysis of variance (ANOVA) and regression analysis. Annual seasonal data of the climatic variables for temperature (min. and max), rainfall, and solar radiation from 1990 to 2015 were used. Results confirmed that 74.4% of the total variation in rice yield in the study area was explained by the changes in the independent variables. That is to say, temperature (minimum and maximum), rainfall, and solar radiation explained rice yield with 74.4% in the study area. Rising mean maximum temperature would lead to reduction in rice production while moderate increase in mean minimum temperature would be advantageous towards rice production, and the persistent rise in the mean maximum temperature, in the long run, will have more negatively affect rice production in the future. It is, therefore, important to promote agro-meteorological advisory services, which will be useful in farm planning and yield sustainability. Closer collaboration among the meteorologist and agricultural scientist is needed to increase the awareness about the existing database, crop weather models among others, with a view to reaping the full benefits of research on specific problems and sustainable yield management and also there should be a special initiative by the ADPs (State Agricultural Development Programme) towards promoting best agricultural practices that are resilient to climate variability in rice production and yield sustainability.Keywords: climate variability, impact, productivity, rice
Procedia PDF Downloads 1012758 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine
Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi
Abstract:
One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.Keywords: Combustion, Optically Accessible Engine, Spark-Ignition Engine, Sparl Orientation, Kernel Growth
Procedia PDF Downloads 1402757 Investigating the Impact of Job-Related and Organisational Factors on Employee Engagement: An Emotionally Relevant Approach Based on Psychological Climate and Organisational Emotional Intelligence (OEI)
Authors: Nuno Da Camara, Victor Dulewicz, Malcolm Higgs
Abstract:
Factors on employee engagement: In particular, although theorists have described the critical role of emotional cognition of the workplace environment as antecedents to employee engagement, empirical research on the impact of emotional cognition on employee engagement is limited. However, previous researchers have typically provided evidence of the link between emotional cognition of the workplace environment and workplace attitudes such as job satisfaction and organisational commitment. This study therefore aims to investigate the impact of emotional cognition of job, role, leader and organisation domains of the work environment – as represented by measures of psychological climate and organizational emotional intelligence (OEI) - on employee engagement. The research is based on a quantitative cross-sectional survey of employees in a UK charity organization (n=174). The research instruments applied include the psychological climate scale, the organisational emotional intelligence questionnaire (OEIQ) and the Utrecht Work Engagement Scale (UWES). The data were analysed using hierarchical regression and partial least squares (PLS) analytical techniques. The results of the study show that both psychological climate and OEI, which represent emotional cognition of job, role, leader and organisation domains in the workplace are significant drivers of employee engagement. In particular, the study found that a sense of contribution and challenge at work are the strongest drivers of vigour, dedication and absorption and highlights the importance of emotionally relevant approaches in furthering our understanding of workplace engagement.Keywords: employee engagement, organisational emotional intelligence, psychological climate, workplace attitudes
Procedia PDF Downloads 5052756 The Urgenda and Juliana Cases: Redefining the Notion of Environmental Democracy
Authors: Valentina Dotto
Abstract:
Climate change cases used to take the form of statutory disputes rather than constitutional or common law disputes. This changed in 2015, with the Urgenda Climate case in the Netherlands (Urgenda Foundation v. The State of the Netherlands, C/09/456689/HAZA 13-1396) and, the Juliana case in the U.S. (United States v. U.S. District Court for District of Oregon, 17-71692, 9th Cir.). The two cases represent a new type of climate litigation, the claims brought against the federal government were in fact grounded in constitutional rights. The complaints used the Doctrine of Public Trust as a cornerstone for the lawsuits asserting that government's actions against climate change failed to protect essential public trust resources; thus, violating a generation's constitutional rights to life, liberty, and property. The Public Trust Doctrine –a quintessentially American legal concept-, reserved to the States by virtue of the 9th and 10th amendment of the federal Constitution, gives them considerable jurisdiction over natural resources and has been refined by a number of Supreme Court rulings. The Juliana case exemplifies the Doctrine’s evolutionary nature because it attempts to apply it to the federal government, and establish a right to a climate system capable of sustaining human life as a fundamental right protected by a substantive due process. Furthermore, the flexibility of the Doctrine makes it permissible to be applied to a variety of different legal systems as in the Urgenda case. At the very heart of the lawsuits stands the question of who owns the Earth resources and, to what extent the general public can claim the services that the Earth provides as common property. By employing the widest possible definition of the Doctrine of Public Trust these lawsuits tried to redefine environmental resources as a collective right of all people. By doing case analysis, the paper explores how these cases can contribute to widening the public access to information and broadening the public voice in decision making as well as providing a precedent to equal access in seeking justice and redress from environmental failures.Keywords: climate change, doctrine of public trust, environmental democracy, Juliana case, Urgenda climate case
Procedia PDF Downloads 1732755 Insight on Passive Design for Energy Efficiency in Commercial Building for Hot and Humid Climate
Authors: Aravind J.
Abstract:
Passive design can be referred to a way of designing buildings that takes advantage of the prevailing climate and natural energy resources. Which will be a key to reduce the increasing energy usage in commercial buildings. Most of the small scale commercial buildings made are merely a thermal mass inbuilt with active systems to bring lively conditions. By bringing the passive design strategies for energy efficiency in commercial buildings will reduce the usage of active systems. Thus the energy usage can be controlled through analysis of daylighting and improved living conditions in the indoor spaces by using passive techniques. And comparative study on different passive design systems and conventional methods will be approached for commercial buildings in hot and humid region. Possible effects of existing risks implied with solution for those problems is also a part of the paper. The result will be carried on with the design programme to prove the workability of the strategies.Keywords: passive design, energy efficiency, commercial buildings, hot and humid climate
Procedia PDF Downloads 3652754 Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator
Authors: Raymond Limen Njinga, Adeneye Samuel Olaolu, Akinyode Ojumoola Ajimo
Abstract:
Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value.Keywords: linear accelerator, absorbed dose rate, isocenter, phantom, ionization chamber
Procedia PDF Downloads 592753 Towards the Need of Resilient Design and Its Assessment in South China
Authors: Alan Lai, Wilson Yik
Abstract:
With rapid urbanization, there has been a dramatic increase in global urban population in Asia and over half of population in Asia will live in urban regions in the near future. Facing with increasing exposure to climate-related stresses and shocks, most of the Asian cities will very likely to experience more frequent heat waves and flooding with rising sea levels, particularly the coastal cities will grapple for intense typhoons and storm surges. These climate changes have severe impacts in urban areas at the costs of infrastructure and population, for example, human health, wellbeing and high risks of dengue fever, malaria and diarrheal disease. With the increasing prominence of adaptation to climate changes, there have been changes in corresponding policies. Smaller cities have greater potentials for integrating the concept of resilience into their infrastructure as well as keeping pace with their rapid growths in population. It is therefore important to explore the potentials of Asian cities adapting to climate change and the opportunities of building climate resilience in urban planning and building design. Furthermore, previous studies have mainly attempted at exploiting the potential of resilience on a macro-level within urban planning rather than that on micro-level within the context of individual building. The resilience of individual building as a research field has not yet been much explored. Nonetheless, recent studies define that the resilience of an individual building is the one which is able to respond to physical damage and recover from such damage in a quickly and cost-effectively manner, while maintain its primary functions. There is also a need to develop an assessment tool to evaluate the resilience on building scale which is still largely uninvestigated as it should be regarded as a basic function of a building. Due to the lack of literature reporting metric for assessing building resilience with sustainability, the research will be designed as a case study to provide insight into the issue. The aim of this research project is to encourage and assist in developing neighborhood climate resilience design strategies for Hong Kong so as to bridge the gap between difference scales and that between theory and practice.Keywords: resilience cities, building resilience, resilient buildings and infrastructure, climate resilience, hot and humid southeast area, high-density cities
Procedia PDF Downloads 1622752 Linking Temporal Changes of Climate Factors with Staple Cereal Yields in Southern Burkina Faso
Authors: Pius Borona, Cheikh Mbow, Issa Ouedraogo
Abstract:
In the Sahel, climate variability has been associated with a complex web of direct and indirect impacts. This natural phenomenon has been an impediment to agro-pastoral communities who experience uncertainty while involving in farming activities which is also their key source of livelihood. In this scenario, the role of climate variability in influencing the performance, quantity and quality of staple cereals yields, vital for food and nutrition security has been a topic of importance. This response of crops and subsequent yield variability is also a subject of immense debate due to the complexity of crop development at different stages. This complexity is further compounded by influence of slowly changing non-climatic factors. With these challenges in mind, the present paper initially explores the occurrence of climate variability at an inter annual and inter decadal level in South Burkina Faso. This is evidenced by variation of the total annual rainfall and the number of rainy days among other climatic descriptors. Further, it is shown how district-scale cereal yields in the study area including maize, sorghum and millet casually associate variably to the inter-annual variation of selected climate variables. Statistical models show that the three cereals widely depict sensitivity to the length of the growing period and total dry days in the growing season. Maize yields on the other hand relate strongly to the rainfall amount variation (R2=51.8%) showing high moisture dependence during critical growth stages. Our conclusions emphasize on adoption of efficient water utilization platforms especially those that have evidently increased yields and strengthening of forecasts dissemination.Keywords: climate variability, cereal yields, seasonality, rain fed farming, Burkina Faso, rainfall
Procedia PDF Downloads 2022751 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia
Authors: Sawarni Hasibuan, Rudi Effendi Listyanto
Abstract:
The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency
Procedia PDF Downloads 3222750 Improvement of Energy Efficiency and Cost Management for Household Refrigerators Under Different Climate Classes and Examination of Effect of VIP Ageing and Usage of Electronic Expansion Valve Technology
Authors: Yesim Guzel, Mert Akbiyik
Abstract:
Energy consumption (EC) and costs due to the usage of refrigerators are increasing continuously. This creates a disadvantage not only on the budget of customers but also to global warming. This study aims to decrease EC and cost due to refrigerator EC all around the world. Research about the effect of climate classes on industrial cabinets, supermarket refrigerators or room air conditioning systems can be found in open literature; however, to the best of authors' knowledge, there is no study that includes the effect of climate classes, vacuum insulation panels (VIP) and polyurethane (PU) aging, and electronic expansion valve (EEV) technology for home refrigerators. For this purpose, 4 configurations are examined for household refrigerators for ST (subtropical) and T (tropical) climates. The aging of VIP and PU and the annual interest rate of electricity cost (%5) are considered to obtain more accurate results in calculations. Heat gain (Q), EC, and CO₂ emission are calculated. Config. 1, 2, 3 and 4 are with NO VIP, FULL VIP, NO VIP+ EEV, and FULL VIP+EEV, respectively. As a result, it is observed that Q for Config. 1 and 2 increase as Temp increases. Moreover, from ST to T climates, for all the configurations, EC increases. Additionally, the payback period (t) is based on reference cabinet Config. 1 is calculated. It is considered that annual electricity cost as constant for every climate. When ts are compared with Config. 1 for both climates, it is seen that the minimum t of 2 years is Config. 3. This study shows not only is EEV a better alternative option than VIPs. Hence, EEVs are way cheaper than VIPs and have shorter t, but it also allows us to compare Ec, Q, CO₂ emissions, and cost.Keywords: energy, thermodynamics, ageing, VIP, polyurethane, expansion valve, EEV, PU, climate, refrigerating, cooling, efficiency
Procedia PDF Downloads 452749 Soil Carbon Stock in Sub-Optimal Land due to Climate Change on Development Cymbopogon nardus L. at Simawang Village, West Sumatera, Indonesia
Authors: Juniarti Yuni
Abstract:
Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20–40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 T/Ha at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land
Procedia PDF Downloads 2992748 Greenhouse Gas Mitigation by Promoting Renewable Energy in Algeria
Authors: F. Sahnoune
Abstract:
The study focuses on the analysis of the Algerian greenhouse gase emissions. In Algeria, as in other countries, the issue of greenhouse gas (GHG) emissions and climate change is the subject of great concern. As climate change is a global problem and taking into consideration the principle of 'common but differentiated responsibilities' as mentioned in the Rio Declaration in 1992, Algeria has initiated a broad program of voluntary reduction of GHG emissions and climate change adaptation. Thus although the contribution of Algeria on global warming is minimal (less than 0.5% of global GHG emissions), the country is, because its geographical position and climatic characteristics, very vulnerable and should integrate mitigation and adaptation into its development policy. Even a small rise in temperature would lead to various socio-economic problems that hinder the development of the country. The models predict that rainfall events are less frequent but more intense, while droughts are more common and longer. The decrease of water resources, declining agricultural yields, encroaching desert, the challenge of planning and the energy consumption for air conditioning are only the initial impacts to which Algeria must find answers supportable economically and socially. The study examines to what extent, Algeria can significantly reduce greenhouse gas emissions. We present an analysis of the current situation, trends in CO2 emissions, footprint of Algeria, national climate plan and especially what will be the impact on GHG emissions of the new strategy for promoting renewable energy adopted in 2011 and expects to produce 40% of electricity needs from solar energy. The results show that in 2012 the GHG emissions totaled 153 MT CO2 eq and growing at a rate of over 3%. The Introduction of solar energy in electricity production and implementation of energy efficiency allow to reduce by 2030 more than 300 MT CO2 eq. Avenues of consideration relating to a combination of policies and improved technologies that are able to reduce CO2 emissions and mitigate the impacts caused by climate change in the medium term will also be presented.Keywords: climate change, co2 mitigation, greenhouse gases, renewable energy, sustainable development
Procedia PDF Downloads 2852747 Effect of Climate Change and Water Sources: Sustainability of Rural Water Sanitation and Hygiene of Tanahun District
Authors: Bharat Sapkota
Abstract:
Nepal is the one of the victim country of climate change. Decreasing snow line, sometimes higher and sometime non-rain fall are common phenomena in hill area. Natural flood disaster and drought is also common every year in certain place of the country. So this paper analyze the effect of climate and natural water sources for sustainability of water sanitation and hygiene of Tanahun district. It is one of the Rural Water Supply and Sanitation Project Western Nepal Phase-II (RWSSP-WN Phase-II) project district out of 14 project districts of western and mid-western Nepal. RWSSP-WN II is a bilateral development cooperation of governments of Nepal and Finland. Big investment is still going on in water sanitation and hygiene sector but sustainability is still a challenge throughout the country. So RWSSP-WN has started the strengthen of the capacity of local Governments to deliver services in water supply, sanitation and hygiene and its sustainability through the implementation of cross cutting approach of climate change and disaster risk reduction. The study shows that the average yield in 685 natural point sources were around 0.045 l/s in 2014 but it was twice as high in 2004 i.e. 0.09 l/s. The maximum measured yield in 2014 was 1.87 l/s, whereas, the maximum yield was 3 l/s in 2004. Likewise, spring source mean and maximum yield measured in 2014 were 0.16 l/s and 3.33 l/s respectively, whereas, mean and maximum yields in 2004 were 0.204 l/s and 3 l/s respectively. Small streams average yield measured in 2014 was 0.32 l/s with the maximum of around 4.99 l/s. In 2004, mean and maximum yields of streams were 0.485 l/s and 5 l/s respectively. The overall climate between years 2002 to 2013 and measured yield data between 2004 and 2014 shows climate as one of the causes of water source decline. The temperature is rising with pace of 0.041°C per year and rainfall is decreased by 16.8 mm/year. The Khosla’s empirical formula shows decrease of 1.7 cm/year in runoff. At present sustainability of water, sanitation and hygiene is more challenge due to sources decreasing in the district. Sanitation and hygiene total behavior change and watershed conservation as well as design and implementation of recharge pound construction are the way forward of sustainability of water, sanitation and hygiene.Keywords: water sanitation, hygiene, sustainability, climate change
Procedia PDF Downloads 3352746 The Basin Management Methodology for Integrated Water Resources Management and Development
Authors: Julio Jesus Salazar, Max Jesus De Lama
Abstract:
The challenges of water management are aggravated by global change, which implies high complexity and associated uncertainty; water management is difficult because water networks cross domains (natural, societal, and political), scales (space, time, jurisdictional, institutional, knowledge, etc.) and levels (area: patches to global; knowledge: a specific case to generalized principles). In this context, we need to apply natural and non-natural measures to manage water and soil. The Basin Management Methodology considers multifunctional measures of natural water retention and erosion control and soil formation to protect water resources and address the challenges related to the recovery or conservation of the ecosystem, as well as natural characteristics of water bodies, to improve the quantitative status of water bodies and reduce vulnerability to floods and droughts. This method of water management focuses on the positive impacts of the chemical and ecological status of water bodies, restoration of the functioning of the ecosystem and its natural services; thus, contributing to both adaptation and mitigation of climate change. This methodology was applied in 7 interventions in the sub-basin of the Shullcas River in Huancayo-Junín-Peru, obtaining great benefits in the framework of the participation of alliances of actors and integrated planning scenarios. To implement the methodology in the sub-basin of the Shullcas River, a process called Climate Smart Territories (CST) was used; with which the variables were characterized in a highly complex space. The diagnosis was then worked using risk management and adaptation to climate change. Finally, it was concluded with the selection of alternatives and projects of this type. Therefore, the CST approach and process face the challenges of climate change through integrated, systematic, interdisciplinary and collective responses at different scales that fit the needs of ecosystems and their services that are vital to human well-being. This methodology is now replicated at the level of the Mantaro river basin, improving with other initiatives that lead to the model of a resilient basin.Keywords: climate-smart territories, climate change, ecosystem services, natural measures, Climate Smart Territories (CST) approach
Procedia PDF Downloads 1492745 A Comprehensive Study on CO₂ Capture and Storage: Advances in Technology and Environmental Impact Mitigation
Authors: Oussama Fertaq
Abstract:
This paper investigates the latest advancements in CO₂ capture and storage (CCS) technologies, which are vital for addressing the growing challenge of climate change. The study focuses on multiple techniques for CO₂ capture, including chemical absorption, membrane separation, and adsorption, analyzing their efficiency, scalability, and environmental impact. The research further explores geological storage options such as deep saline aquifers and depleted oil fields, providing insights into the challenges and opportunities presented by each method. This paper emphasizes the importance of integrating CCS with existing industrial processes to reduce greenhouse gas emissions effectively. It also discusses the economic and policy frameworks required to promote wider adoption of CCS technologies. The findings of this study offer a comprehensive view of the potential of CCS in achieving global climate goals, particularly in hard-to-abate sectors such as energy and manufacturing.Keywords: CO₂ capture, carbon storage, climate change mitigation, carbon sequestration, environmental sustainability
Procedia PDF Downloads 102744 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant
Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen
Abstract:
Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.Keywords: PAH, PSR, energy recovery, ferro alloy furnace
Procedia PDF Downloads 2722743 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation
Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw
Abstract:
This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia
Procedia PDF Downloads 1582742 Spatio-Temporal Changes of Rainfall in São Paulo, Brazil (1973-2012): A Gamma Distribution and Cluster Analysis
Authors: Guilherme Henrique Gabriel, Lucí Hidalgo Nunes
Abstract:
An important feature of rainfall regimes is the variability, which is subject to the atmosphere’s general and regional dynamics, geographical position and relief. Despite being inherent to the climate system, it can harshly impact virtually all human activities. In turn, global climate change has the ability to significantly affect smaller-scale rainfall regimes by altering their current variability patterns. In this regard, it is useful to know if regional climates are changing over time and whether it is possible to link these variations to climate change trends observed globally. This study is part of an international project (Metropole-FAPESP, Proc. 2012/51876-0 and Proc. 2015/11035-5) and the objective was to identify and evaluate possible changes in rainfall behavior in the state of São Paulo, southeastern Brazil, using rainfall data from 79 rain gauges for the last forty years. Cluster analysis and gamma distribution parameters were used for evaluating spatial and temporal trends, and the outcomes are presented by means of geographic information systems tools. Results show remarkable changes in rainfall distribution patterns in São Paulo over the years: changes in shape and scale parameters of gamma distribution indicate both an increase in the irregularity of rainfall distribution and the probability of occurrence of extreme events. Additionally, the spatial outcome of cluster analysis along with the gamma distribution parameters suggest that changes occurred simultaneously over the whole area, indicating that they could be related to remote causes beyond the local and regional ones, especially in a current global climate change scenario.Keywords: climate change, cluster analysis, gamma distribution, rainfall
Procedia PDF Downloads 318