Search results for: behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2622

Search results for: behavior

2142 Finite Element Analysis of RC Frames with Retrofitted Infill Walls

Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu

Abstract:

The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.

Keywords: finite element analysis, infilled RC frames, infill wall, strengthening

Procedia PDF Downloads 498
2141 Reliability and Validity Examinations of the Child Behavior Checklist (CBCL): One of the Achenbach System of Empirically Based Assessment

Authors: Zhidong Zhang, Zhi-Chao Zhang

Abstract:

In this study, three Chinese versions of the Achenbach systems of empirically based assessment (ASEBA) scales were used to examine adolescent psychological and behavioral problems. These three scales are CBCL, TRF, and YSR. In order to further understand the robustness of these scales, their reliability and construct validity have been examined. Each scale consists of about 113 items plus relevant background variables. These 113 items were further classified into 8 psychological and behavioral problems: emotionally reactive, anxious/depressed, somatic complaints, withdrawn, attention problems, aggressive behavior, social problems, thought problems, and association problems. The study explored the item and construct correlation relations and the correlations between the corresponding constructs among three scales. The results indicated that the associations between item and constructs varied. The construct validities were very robust.

Keywords: ASEBA, construct validity, psychological and behavioral problems, reliability

Procedia PDF Downloads 657
2140 Effect of Transition Metal Addition on Aging Behavior of Invar Alloy

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight per cent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: Invar alloy, transition metals, phase equilibrium, aging behavior, microstructure, hardness

Procedia PDF Downloads 516
2139 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation.

Keywords: stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties

Procedia PDF Downloads 372
2138 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil

Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro

Abstract:

The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.

Keywords: biodegradation, cellulose acetate, DMA, simulated soil

Procedia PDF Downloads 195
2137 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 123
2136 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 258
2135 Effect of Surface Treatments on the Cohesive Response of Nylon 6/silica Interfaces

Authors: S. Arabnejad, D. W. C. Cheong, H. Chaobin, V. P. W. Shim

Abstract:

Debonding is the one of the fundamental damage mechanisms in particle field composites. This phenomenon gains more importance in nano composites because of the extensive interfacial region present in these materials. Understanding the debonding mechanism accurately, can help in understanding and predicting the response of nano composites as the interface deteriorates. The small length scale of the phenomenon makes the experimental characterization complicated and the results of it, far from real physical behavior. In this study the damage process in nylon-6/silica interface is examined through Molecular Dynamics (MD) modeling and simulations. The silica has been modeled with three forms of surfaces – without any surface treatment, with the surface treatment of 3-aminopropyltriethoxysilane (APTES) and with Hexamethyldisilazane (HMDZ) surface treatment. The APTES surface modification used to create functional groups on the silica surface, reacts and form covalent bonds with nylon 6 chains while the HMDZ surface treatment only interacts with both particle and polymer by non-bond interaction. The MD model in this study uses a PCFF force field. The atomic model is generated in a periodic box with a layer of vacuum on top of the polymer layer. This layer of vacuum is large enough that assures us from not having any interaction between particle and substrate after debonding. Results show that each of these three models show a different traction separation behavior. However, all of them show an almost bilinear traction separation behavior. The study also reveals a strong correlation between the length of APTES surface treatment and the cohesive strength of the interface.

Keywords: debonding, surface treatment, cohesive response, separation behaviour

Procedia PDF Downloads 435
2134 A Study of Human Communication in an Internet Community

Authors: Andrew Laghos

Abstract:

The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.

Keywords: human communication, internet communities, online user behavior, psychology

Procedia PDF Downloads 478
2133 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume

Authors: Alya Harichane, Badreddine Harichane

Abstract:

The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume

Procedia PDF Downloads 53
2132 Applied Behavior Analysis and Speech Language Pathology Interprofessional Practice to Support Autistic Children with Complex Communication Needs

Authors: Kimberly Ho, Maeve Donnelly

Abstract:

In this paper, a speech-language pathologist (SLP) and Board Certified Behavior Analysts® (BCBA) with a combined professional experience of almost 50 years will discuss their experiences working with individuals on the autism spectrum. Some autistic children require augmentative and alternative communication (AAC) to meet their communication needs. These learners present with unique strengths and challenges, often requiring intervention from a team of professionals to generalize skills across environments. Collaboration between SLPs and BCBAs will be discussed in terms of strengths and challenges. Applied behavior analysis (ABA) will be defined and explained in the context of the treatment of learners on the autism spectrum with complex communication needs (CCN). The requirement for collaboration will be discussed by the governing boards for both BCBAs and SLPs. The strengths of each discipline will be compared along with difficulties faced when professionals experience disciplinary centrism. The challenges in teaching autistic learners with CCN will be reviewed. Case studies will be shared in which BCBAs and SLPs engage in interprofessional practice to support autistic children who use AAC to participate in a social skills group. Learner outcomes will be shared and assessed through both an SLP and BCBA perspective. Finally, ideas will be provided to promote the interprofessional practice, including establishing a shared framework, avoiding professional jargon and moving towards common terminology, and focusing on the data to ensure the efficacy of treatment.

Keywords: autism, cross disciplinary collaboration, augmentative and alternative communication, generalization

Procedia PDF Downloads 99
2131 Evaluation of Drained Shear Strength of Bentonite-Sand Mixtures

Authors: Navid Khayat

Abstract:

Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand-bentonite at optimum water content is main purpose of this research. To prepare the required samples, first, bentonite and sand are mixed in 10, 30, 50 and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress-strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.

Keywords: bentonite, sand, drained shear strength, cohesion intercept

Procedia PDF Downloads 293
2130 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 273
2129 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures

Authors: Samir Al-Zobaidi

Abstract:

This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100°C. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.

Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation

Procedia PDF Downloads 353
2128 Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH

Authors: K. M. Salim Reza, M. Hafiz Mia, M. A. Aziz, M. A. Motin, M. M. Rahman, M. A. Hasem

Abstract:

The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process.

Keywords: cyclic voltammetry, Fe-Cc Complex, pH effect, redox interaction

Procedia PDF Downloads 335
2127 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model

Procedia PDF Downloads 130
2126 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.

Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model

Procedia PDF Downloads 486
2125 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well-known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: functionally graded material, pressure, steady state creep, thick-cylinder

Procedia PDF Downloads 454
2124 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: non-Newtonian fluid, power-law fluid, natural convection, heat transfer enhancement, cavity, wavy wall

Procedia PDF Downloads 242
2123 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, K. Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 456
2122 Hybrid Diagrid System for High-Rise Buildings

Authors: Seyed Saeid Tabaee, Mohammad Afshari, Bahador Ziaeemehr, Omid Bahar

Abstract:

Nowadays, using modern structural systems with specific capabilities, like Diagrid, is emerging around the world. In this paper, a new resisting system, a combination of both Diagrid axial behavior and proper seismic performance of regular moment frames in tall buildings, named 'Hybrid Diagrid' is presented. The scaled specimen of the suggested hybrid system was built and tested using IIEES shaking table. The natural frequency and structural response of the analytical model were updated with the real experimental results. In order to compare its performance with the traditional Diagrid and moment frame systems, time history analysis was carried out. Extensive analysis shows the efficient seismic responses and economical behavior of Hybrid Diagrid structure with respect to the other two systems.

Keywords: hybrid diagrid system, moment frame, shaking table, tall buildings, time history analysis

Procedia PDF Downloads 190
2121 Online Information Seeking: A Review of the Literature in the Health Domain

Authors: Sharifah Sumayyah Engku Alwi, Masrah Azrifah Azmi Murad

Abstract:

The development of the information technology and Internet has been transforming the healthcare industry. The internet is continuously accessed to seek for health information and there are variety of sources, including search engines, health websites, and social networking sites. Providing more and better information on health may empower individuals, however, ensuring a high quality and trusted health information could pose a challenge. Moreover, there is an ever-increasing amount of information available, but they are not necessarily accurate and up to date. Thus, this paper aims to provide an insight of the models and frameworks related to online health information seeking of consumers. It begins by exploring the definition of information behavior and information seeking to provide a better understanding of the concept of information seeking. In this study, critical factors such as performance expectancy, effort expectancy, and social influence will be studied in relation to the value of seeking health information. It also aims to analyze the effect of age, gender, and health status as the moderator on the factors that influence online health information seeking, i.e. trust and information quality. A preliminary survey will be carried out among the health professionals to clarify the research problems which exist in the real world, at the same time producing a conceptual framework. A final survey will be distributed to five states of Malaysia, to solicit the feedback on the framework. Data will be analyzed using SPSS and SmartPLS 3.0 analysis tools. It is hoped that at the end of this study, a novel framework that can improve online health information seeking is developed. Finally, this paper concludes with some suggestions on the models and frameworks that could improve online health information seeking.

Keywords: information behavior, information seeking, online health information, technology acceptance model, the theory of planned behavior, UTAUT

Procedia PDF Downloads 246
2120 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems

Authors: Raouf Alizadeh, Kadijeh Hemmati

Abstract:

The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.

Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior

Procedia PDF Downloads 294
2119 Simulation of Stretching and Fragmenting DNA by Microfluidic for Optimizing Microfluidic Devices

Authors: Shuyi Wu, Chuang Li, Quanshui Zheng, Luping Xu

Abstract:

Stretching and snipping DNA molecule by microfluidic has important application value in gene analysis by lab on a chip. Movement, deformation and fragmenting of DNA in microfluidic are typical fluid-solid coupling problems. An efficient and common simulation system for researching the movement, deformation and fragmenting of DNA by microfluidic has not been well developed. In our study, Brownian dynamics-finite element method (BD-FEM) is used to simulate the dynamic process of stretching and fragmenting DNA by contraction flow. The shape and parameters of micro-channels are changed to optimize the stretching and fragmenting properties of DNA. Our results indicate that strain rate, resulting from contraction microchannel, is the main control parameter for stretching and fragmenting DNA. There is good consistency between the simulation data and previous experimental result about the single DNA molecule behavior and averaged fragmenting properties in this study. BD-FEM method is an efficient calculating tool to research stretching and fragmenting behavior of single DNA molecule and optimize microfluidic devices for manipulating, stretching and fragmenting DNA.

Keywords: fragmenting, DNA, microfluidic, optimize.

Procedia PDF Downloads 304
2118 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 86
2117 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 107
2116 Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors

Authors: Igor Svishchev, Kashif Choudhry

Abstract:

Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor.

Keywords: high-temperature corrosion, non-intrusive monitoring, reactor materials, supercritical water

Procedia PDF Downloads 117
2115 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 366
2114 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem

Abstract:

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles

Procedia PDF Downloads 330
2113 Pyroelectric Effect on Thermoelectricity of AlInN/GaN Heterostructures

Authors: B. K. Sahoo

Abstract:

Superior thermoelectric (TE) efficiency of AlₓIn₁₋ₓN /GaN heterostructure (HS) requires a minimum value of thermal conductivity (k). A smaller k would lead to even further increase of TE figure of merit (ZT). The built-in polarization (BIP) electric field of AlₓIn₁₋ₓN /GaN HS enhances S, and σ of the HS, however, the effect of BIP field on k of the HS has not been explored. Study of thermal conductivities (k: without BIP and kp: including BIP) vs temperature predicts pyroelectric behavior of HS. Both k and kp show crossover at a temperature Tp. The result shows that below Tp, kp < k due to negative thermal expansion coefficient (TEC). However, above Tp, kp > k. Above Tp, piezoelectric polarization dominates over spontaneous polarization due to positive TEC. This generates more lattice mismatch resulting in the significant contribution of BIP field to thermal conductivity. Thus, Tp can be considered as primary pyroelectric transition temperature of the material as above Tp thermal expansion takes place which is the reason for the secondary pyroelectric effect. It is found that below Tp, kp is decreased; thus enhancing TE efficiency. For x=0.1, 0.2 and 0.3; Tp are close to 200, 210 and 260 K, respectively. Thus, k of the HS can be modified as per requirement by tailoring the Al composition; making it suitable simultaneously for the design of high-temperature pyroelectric sensors and TE module for maximum power production.

Keywords: AlₓIn₁₋ₓN/GaN heterostructure, built in polarization, pyroelectric behavior, thermoelectric efficiency

Procedia PDF Downloads 96