Search results for: adaptive estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2878

Search results for: adaptive estimation

2398 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
2397 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 156
2396 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
2395 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 122
2394 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 126
2393 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments

Authors: Felix Böck

Abstract:

Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.

Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization

Procedia PDF Downloads 16
2392 Adaptive Assemblies: A Scalable Solution for Atlanta's Affordable Housing Crisis

Authors: Claudia Aguilar, Amen Farooq

Abstract:

Among other cities in the United States, the city of Atlanta is experiencing levels of growth that surpass anything we have witnessed in the last century. With the surge of population influx, the available housing is practically bursting at the seams. Supply is low, and demand is high. In effect, the average one-bedroom apartment runs for 1,800 dollars per month. The city is desperately seeking new opportunities to provide affordable housing at an expeditious rate. This has been made evident by the recent updates to the city’s zoning. With the recent influx in the housing market, young professionals, in particular millennials, are desperately looking for alternatives to stay within the city. To remedy Atlanta’s affordable housing crisis, the city of Atlanta is planning to introduce 40 thousand of new affordable housing units by 2026. To achieve the urgent need for more affordable housing, the architectural response needs to adapt to overcome this goal. A method that has proven successful in modern housing is to practice modular means of development. A method that has been constrained to the dimensions of the max load for an eighteen-wheeler. This approach has diluted the architect’s ability to produce site-specific, informed design and rather contributes to the “cookie cutter” stigma that the method has been labeled with. This thesis explores the design methodology for modular housing by revisiting its constructability and adaptability. This research focuses on a modular housing type that could break away from the constraints of transport and deliver adaptive reconfigurable assemblies. The adaptive assemblies represent an integrated design strategy for assembling the future of affordable dwelling units. The goal is to take advantage of a component-based system and explore a scalable solution to modular housing. This proposal aims specifically to design a kit of parts that are made to be easily transported and assembled but also gives the ability to customize the use of components to benefit all unique conditions. The benefits of this concept could include decreased construction time, cost, on-site labor, and disruption while providing quality housing with affordable and flexible options.

Keywords: adaptive assemblies, modular architecture, adaptability, constructibility, kit of parts

Procedia PDF Downloads 85
2391 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 186
2390 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules

Authors: Gagandeep Singh, Navdeep Singh

Abstract:

Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.

Keywords: WSN, I-Leach, MATLAB, sensor

Procedia PDF Downloads 275
2389 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter

Authors: Vahid Anari, Leila Shahmohammadi

Abstract:

Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction

Procedia PDF Downloads 67
2388 Estimation of Train Operation Using an Exponential Smoothing Method

Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.

Keywords: exponential smoothing method, open data, operation estimation, train schedule

Procedia PDF Downloads 388
2387 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform

Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier

Abstract:

The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.

Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing

Procedia PDF Downloads 196
2386 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects

Authors: Sami Mestiri, Abdeljelil Farhat

Abstract:

The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.

Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC

Procedia PDF Downloads 542
2385 A Multi-Cluster Enterprise Framework for Evolution of Knowledge System among Enterprises, Governments and Research Institutions

Authors: Sohail Ahmed, Ke Xing

Abstract:

This research theoretically explored the evolution mechanism of enterprise technological innovation capability system (ETICS) from the perspective of complex adaptive systems (CAS). Starting from CAS theory, this study proposed an analytical framework for ETICS, its concepts and theory by integrating CAS methodology into the management of technological innovation capability of enterprises and discusses how to use the principles of complexity to analyze the composition, evolution and realization of the technological innovation capabilities in complex dynamic environment. This paper introduces the concept and interaction of multi-agent, the theoretical background of CAS and summarizes the sources of technological innovation, the elements of each subject and the main clusters of adaptive interactions and innovation activities. The concept of multi-agents is applied through the linkages of enterprises, research institutions and government agencies with the leading enterprises in industrial settings. The study was exploratory based on CAS theory. Theoretical model is built by considering technological and innovation literature from foundational to state of the art projects of technological enterprises. On this basis, the theoretical model is developed to measure the evolution mechanism of enterprise technological innovation capability system. This paper concludes that the main characteristics for evolution in technological systems are based on enterprise’s research and development personal, investments in technological processes and innovation resources are responsible for the evolution of enterprise technological innovation performance. The research specifically enriched the application process of technological innovation in institutional networks related to enterprises.

Keywords: complex adaptive system, echo model, enterprise knowledge system, research institutions, multi-agents.

Procedia PDF Downloads 69
2384 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 161
2383 Facial Biometric Privacy Using Visual Cryptography: A Fundamental Approach to Enhance the Security of Facial Biometric Data

Authors: Devika Tanna

Abstract:

'Biometrics' means 'life measurement' but the term is usually associated with the use of unique physiological characteristics to identify an individual. It is important to secure the privacy of digital face image that is stored in central database. To impart privacy to such biometric face images, first, the digital face image is split into two host face images such that, each of it gives no idea of existence of the original face image and, then each cover image is stored in two different databases geographically apart. When both the cover images are simultaneously available then only we can access that original image. This can be achieved by using the XM2VTS and IMM face database, an adaptive algorithm for spatial greyscale. The algorithm helps to select the appropriate host images which are most likely to be compatible with the secret image stored in the central database based on its geometry and appearance. The encryption is done using GEVCS which results in a reconstructed image identical to the original private image.

Keywords: adaptive algorithm, database, host images, privacy, visual cryptography

Procedia PDF Downloads 130
2382 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator

Authors: J. Ritonja

Abstract:

Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.

Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification

Procedia PDF Downloads 247
2381 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed

Abstract:

This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 202
2380 Pragmatism in Adaptive Reuse of Obsolete Industrial Land in China

Authors: Yong Li

Abstract:

Major cities in China has experienced a shift from production based on manufacturing industry to tertiary industry. How to make a better use of existing obsolete industrial land within urban cores has become a difficult problem for many policymakers. City governments regard old manufacturing industrial land as an important source of land to facilitate the development of the cities. Despite the announcement of policies in promoting that, a large portion of industrial land is still not properly redeveloped and most of them became obsolete. The study uses the project of Xinyi International Club as a case to examine the process of adaptive reuse of obsolete industrial space in Guangzhou, China. It attempts to elucidate the underlying mechanisms by identifying the key forces from both the government and the private sectors in influencing the process. The study found that market forces in transforming industrial space are exerting a strong impact on the existing land use planning system in Chinese cities. Pragmatic relaxation of the formal land use the regulatory framework and government supportive land-use intervention have also been crucial towards achieving successful implementation of the restructuring project and making it a showcase. This study questions whether these extraordinary measures, in particular, the use of temporary land use permit, are sustainable in facilitating the transformation of derelict industrial land, and in informing future industrial land-use restructuring policies. It concludes that, while the land use regulatory system in China is becoming increasingly dynamic and flexible, it remains ill-equipped in responding positively to the market, which is characterized by an increasing bargaining power of the private sector. A comprehensive appraisal of the overall impacts of these adaptive re-uses on society is wanting.

Keywords: China, land alteration, obsolete industrial properties, urban planning

Procedia PDF Downloads 146
2379 Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor

Authors: Junkyeong Kim, Jooyoung Park, Aoqi Zhang, Seunghee Park

Abstract:

The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge.

Keywords: tensile force estimation, embedded EM sensor, magnetization energy loss, PSC girder

Procedia PDF Downloads 337
2378 Estimation of Source Parameters Using Source Parameters Imaging Method From Digitised High Resolution Airborne Magnetic Data of a Basement Complex

Authors: O. T. Oluriz, O. D. Akinyemi, J. A.Olowofela, O. A. Idowu, S. A. Ganiyu

Abstract:

This study was carried out using aeromagnetic data which record variation in the magnitude of the earth magnetic field in order to detect local changes in the properties of the underlying geology. The aeromagnetic data (Sheet No. 261) was acquired from the archives of Nigeria Geological Survey Agency of Nigeria, obtained in 2009. The study present estimation of source parameters within an area of about 3,025 square kilometers on geographic latitude to and longitude to within Ibadan and it’s environs in Oyo State, southwestern Nigeria. The area under study belongs to part of basement complex in southwestern Nigeria. Estimation of source parameters of aeromagnetic data was achieve through the application of source imaging parameters (SPI) techniques that provide delineation, depth, dip contact, susceptibility contrast and mineral potentials of magnetic signatures within the region. The depth to the magnetic sources in the area ranges from 0.675 km to 4.48 km. The estimated depth limit to shallow sources is 0.695 km and depth to deep sources is 4.48 km. The apparent susceptibility values of the entire study area obtained ranges from 0.01 to 0.005 [SI]. This study has shown that the magnetic susceptibility within study area is controlled mainly by super paramagnetic minerals.

Keywords: aeromagnetic, basement complex, meta-sediment, precambrian

Procedia PDF Downloads 430
2377 Age Estimation and Sex Determination by CT-Scan Analysis of the Hyoid Bone: Application on a Tunisian Population

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, R. Dhouieb, S. Saadi, M. A. Mesrati, A. Chadly

Abstract:

Introduction: The hyoid bone is considered as one of many bones used to identify a missed person. There is a specificity of each population group in human identifications. Objective: To analyze the relationship between age, sex and metric parameters of hyoid bone in Tunisian population sample, using CT-scan. Materials and Methods: A prospective study was conducted in the Department of Forensic Medicine of FattoumaBourguiba Hospital of Monastir-Tunisia during 4 years. A total of 240 samples of hyoid bone were studied. The age of cases ranged from 18 days to 81 years. The specimens were collected only from the deceased of known age. Once dried, each hyoid bone was scanned using CT scan. For each specimen, 10 measurements were taken using a computer program. The measurements consisted of 6 lengths and 4 widths. A regression analysis was used to estimate the relationship between age, sex, and different measurements. For age estimation, a multiple logistic regression was carried out for samples ≤ 35 years. For sex determination, ROC curve was performed. Discriminant value finally retained was based on the best specificity with the best sensitivity. Results: The correlation between real age and estimated age was good (r²=0.72) for samples aged 35 years or less. The unstandardised canonical function equation was estimated using three variables: maximum length of the right greater cornua, length from the middle of the left joint space to the middle of the right joint space and perpendicular length from the centre point of a line between the distal ends of the right and left greater cornua to the centre point of the anterior view of the body of the hyoid bone. For sex determination, the ROC curve analysis reveals that the area under curve was at 81.8%. Discriminant value was 0.451 with a specificity of 73% and sensibility of 79%. The equation function was estimated based on two variables: maximum length of the greater cornua and maximum length of the hyoid bone. Conclusion: The findings of the current study suggest that metric analysis of the hyoid bone may predict the age ≤ 35 years. Sex estimation seems to be more reliable. Further studies dealing with the fusion of the hyoid bone and the current study could help to achieve more accurate age estimation rates.

Keywords: anthropology, age estimation, CT scan, sex determination, Tunisia

Procedia PDF Downloads 172
2376 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210

Procedia PDF Downloads 349
2375 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland

Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli

Abstract:

This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.

Keywords: analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges

Procedia PDF Downloads 162
2374 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.

Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction

Procedia PDF Downloads 96
2373 Adaptive Environmental Control System Strategy for Cabin Air Quality in Commercial Aircrafts

Authors: Paolo Grasso, Sai Kalyan Yelike, Federico Benzi, Mathieu Le Cam

Abstract:

The cabin air quality (CAQ) in commercial aircraft is of prime interest, especially in the context of the COVID-19 pandemic. Current Environmental Control Systems (ECS) rely on a prescribed fresh airflow per passenger to dilute contaminants. An adaptive ECS strategy is proposed, leveraging air sensing and filtration technologies to ensure a better CAQ. This paper investigates the CAQ level achieved in commercial aircraft’s cabin during various flight scenarios. The modeling and simulation analysis is performed in a Modelica-based environment describing the dynamic behavior of the system. The model includes the following three main systems: cabin, recirculation loop and air-conditioning pack. The cabin model evaluates the thermo-hygrometric conditions and the air quality in the cabin depending on the number of passengers and crew members, the outdoor conditions and the conditions of the air supplied to the cabin. The recirculation loop includes models of the recirculation fan, ordinary and novel filtration technology, mixing chamber and outflow valve. The air-conditioning pack includes models of heat exchangers and turbomachinery needed to condition the hot pressurized air bled from the engine, as well as selected contaminants originated from the outside or bled from the engine. Different ventilation control strategies are modeled and simulated. Currently, a limited understanding of contaminant concentrations in the cabin and the lack of standardized and systematic methods to collect and record data constitute a challenge in establishing a causal relationship between CAQ and passengers' comfort. As a result, contaminants are neither measured nor filtered during flight, and the current sub-optimal way to avoid their accumulation is their dilution with the fresh air flow. However, the use of a prescribed amount of fresh air comes with a cost, making the ECS the most energy-demanding non-propulsive system within an aircraft. In such a context, this study shows that an ECS based on a reduced and adaptive fresh air flow, and relying on air sensing and filtration technologies, provides promising results in terms of CAQ control. The comparative simulation results demonstrate that the proposed adaptive ECS brings substantial improvements to the CAQ in terms of both controlling the asymptotic values of the concentration of the contaminant and in mitigating hazardous scenarios, such as fume events. Original architectures allowing for adaptive control of the inlet air flow rate based on monitored CAQ will change the requirements for filtration systems and redefine the ECS operation.

Keywords: cabin air quality, commercial aircraft, environmental control system, ventilation

Procedia PDF Downloads 101
2372 Electromagnetic Source Direction of Arrival Estimation via Virtual Antenna Array

Authors: Meiling Yang, Shuguo Xie, Yilong Zhu

Abstract:

Nowadays, due to diverse electric products and complex electromagnetic environment, the localization and troubleshooting of the electromagnetic radiation source is urgent and necessary especially on the condition of far field. However, based on the existing DOA positioning method, the system or devices are complex, bulky and expensive. To address this issue, this paper proposes a single antenna radiation source localization method. A single antenna moves to form a virtual antenna array combined with DOA and MUSIC algorithm to position accurately, meanwhile reducing the cost and simplify the equipment. As shown in the results of simulations and experiments, the virtual antenna array DOA estimation modeling is correct and its positioning is credible.

Keywords: virtual antenna array, DOA, localization, far field

Procedia PDF Downloads 372
2371 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 191
2370 Proficient Estimation Procedure for a Rare Sensitive Attribute Using Poisson Distribution

Authors: S. Suman, G. N. Singh

Abstract:

The present manuscript addresses the estimation procedure of population parameter using Poisson probability distribution when characteristic under study possesses a rare sensitive attribute. The generalized form of unrelated randomized response model is suggested in order to acquire the truthful responses from respondents. The resultant estimators have been proposed for two situations when the information on an unrelated rare non-sensitive characteristic is known as well as unknown. The properties of the proposed estimators are derived, and the measure of confidentiality of respondent is also suggested for respondents. Empirical studies are carried out in the support of discussed theory.

Keywords: Poisson distribution, randomized response model, rare sensitive attribute, non-sensitive attribute

Procedia PDF Downloads 266
2369 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of a cross section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: robot hand, underactuated mechanism, cross-section deformation spring, prosthetic hand

Procedia PDF Downloads 372