Search results for: petrophysical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9001

Search results for: petrophysical properties

3961 Study of Intermolecular Interactions in Binary Mixtures of 1-Butyl-3-Methyl Imidazolium Bis (Trifluoro Methyl Sulfonyl) Imide and 1-Ethyl-3-Methyl Imidazolium Ethyl Sulphate at Different Temperature from 293.18 to 342.15 K

Authors: V. Lokesh, M. Manjunathan, S. Sairam, K. Saithsh Kumar, R. Anantharaj

Abstract:

The densities of pure and its binary mixtures of 1-Butyl-3-methyl imidazolium bis (trifluoro methyl sulfonyl) imide and 1–Ethyl-3-methyl imidazolium ethyl sulphate at different temperature, over the entire composition range were measured at 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, 33.15, 338.15, 343.15 K. In this study, the liquid-liquid extraction procedure was used. From this experimental data, the excess molar volumes, apparent molar volume, partial molar volumes and the excess partial molar volumes have been calculated for over the whole composition range. Hence, the effect of temperature and composition on all derived thermodynamic properties of this binary mixture will be discussed in terms of intermolecular interactions.

Keywords: ionic liquid, interaction energy, effect of temperature, effect of composition

Procedia PDF Downloads 172
3960 Yeasts Associated to Spontaneous Date Vinegar Process

Authors: F. Halladj, H. Amellal, S. Benamara

Abstract:

Current consumer trends go towards natural products defined as the products obtained by a traditional manufacturing method. Vinegar is one of those products marketed; it may be industrially obtained by a submerged (fast) or traditional (slow) processes. The latter exhibited a high quality because of its complex microbiological transformations (or two-stage fermentation) by the native must flora. Moreover, although that Acetic acid bacteria have traditionally been considered to play the leading role in vinegar production, some studies have recently highlighted that also yeasts metabolism can affect traditional vinegar chemical properties in a remarkable way. Thus, the aim of this study was to monitor a traditional slow process of vinegar as applied in the south of Algeria using date with hard texture (Degla-Beida variety) to isolate and identify the involved yeasts in order to select them as starter culture. Phenotypic and molecular analysis show that the non-Saccharomyces were the main yeasts species isolated throughout the alcoholic spontaneous fermentation and they included Hanseniaspora guilliermondii and Torulaspora delbrueckii.

Keywords: date vinegar, traditional production, yeasts, Phenotypic, Algeria

Procedia PDF Downloads 431
3959 Runtime Monitoring Using Policy-Based Approach to Control Information Flow for Mobile Apps

Authors: Mohamed Sarrab, Hadj Bourdoucen

Abstract:

Mobile applications are verified to check the correctness or evaluated to check the performance with respect to specific security properties such as availability, integrity, and confidentiality. Where they are made available to the end users of the mobile application is achievable only to a limited degree using software engineering static verification techniques. The more sensitive the information, such as credit card data, personal medical information or personal emails being processed by mobile application, the more important it is to ensure the confidentiality of this information. Monitoring non-trusted mobile application during execution in an environment where sensitive information is present is difficult and unnerving. The paper addresses the issue of monitoring and controlling the flow of confidential information during non-trusted mobile application execution. The approach concentrates on providing a dynamic and usable information security solution by interacting with the mobile users during the run-time of mobile application in response to information flow events.

Keywords: mobile application, run-time verification, usable security, direct information flow

Procedia PDF Downloads 381
3958 Engineering Review of Recycled Concrete Production for Structural and Non-Structural Applications (Green Concrete)

Authors: Hadi Rouhi Belvirdi

Abstract:

With the increasing demand for sustainable development, recycled materials are receiving more attention in construction projects. To promote sustainable development, this review article evaluates the feasibility of using recycled concrete in construction projects from an economic and environmental perspective. The results show that making concrete using recycled concrete is a suitable strategy for sustainable development. A complete examination of the physical and chemical properties of these recycled materials also provides important information about their suitability for use in the construction industry. Most of the studies do not show surprising results of the compressive or bending strength of these materials, and only the aspect of sustainable development of these materials is of interest. Their application can be investigated more in masonry and joinery works, but among them, some studies sometimes obtained more compressive and bending strength than the control sample, which can be used in concrete structures. Most of the cases introduced and discussed in this study can be implemented and help the country and the people of Iran preserve the environment and discuss sustainable development.

Keywords: environmental recycling, sustainable development, recycled materials, construction management

Procedia PDF Downloads 28
3957 Localising Gauss’s Law and the Electric Charge Induction on a Conducting Sphere

Authors: Sirapat Lookrak, Anol Paisal

Abstract:

Space debris has numerous manifestations, including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's Law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane, so the Gaussian surface is a very small cylinder, and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless maneuvering space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done.

Keywords: near-field approximation, far-field approximation, localized Gauss’s law, electric charge density

Procedia PDF Downloads 132
3956 Apparent Ageing Mechanism of Polyurethane Coating in Typical Atmospheric Environment

Authors: Jin Gao, Jin Zhang, Xiaogang Li

Abstract:

Outdoor exposure experiments were conducted in three extreme environments, namely the Chinese plateau mountain environment (Lhasa), the cold–temperate environment (Mohe), and the marine atmospheric environment (Wanning), to track a new long-life environment-friendly polyurethane coating. The relationship between apparent properties, namely gloss and microstructural changes, was analyzed, and the influence of typical climatic environment on the aging mechanism of polyurethane coatings was discussed. Results show that the UV radiation in the Lhasa area causes photoaging degradation, micropores are formed on the coating surface, and the powdering phenomenon is obvious. Photodegradation occurs in the Wanning area, and a hydrolysis reaction is observed. The hydrolysis reaction catalyzes the photoaging, the coating surface becomes yellow, and the powdering becomes serious. Photoaging is also present in the Mohe area, but it is mainly due to temperature changes that in turn change the internal stress of the coating. Microcracks and bumps form on the coating surface.

Keywords: aging, atmospheric environment, outdoor exposure, polyurethane coating

Procedia PDF Downloads 126
3955 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials

Authors: Memet Vezir Kahraman, Ferhat Sen

Abstract:

This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.

Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate

Procedia PDF Downloads 160
3954 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 563
3953 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.

Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy

Procedia PDF Downloads 150
3952 An Investigation Into an Essential Property of Creativity, Which Is the First-Person Experience

Authors: Ukpaka Paschal

Abstract:

Margret Boden argues that a creative product is one that is new, surprising, and valuable as a result of the combination, exploration, or transformation involved in producing it. Boden uses examples of artificial intelligence systems that fit all of these criteria and argues that real creativity involves autonomy, intentionality, valuation, emotion, and consciousness. This paper provides an analysis of all these elements in order to try to understand whether they are sufficient to account for creativity, especially human creativity. This paper focuses on Generative Adversarial Networks (GANs), which is a class of artificial intelligence algorithms that are said to have disproved the common perception that creativity is something that only humans possess. This paper will then argue that Boden’s listed properties of creativity, which capture the creativity exhibited by GANs, are not sufficient to account for human creativity, and this paper will further identify “first-person phenomenological experience” as an essential property of human creativity. The rationale behind the proposed essential property is that if creativity involves comprehending our experience of the world around us into a form of self-expression, then our experience of the world really matters with regard to creativity.

Keywords: artificial intelligence, creativity, GANs, first-person experience

Procedia PDF Downloads 136
3951 Exploring the Applications of Modular Forms in Cryptography

Authors: Berhane Tewelday Weldhiwot

Abstract:

This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.

Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory

Procedia PDF Downloads 18
3950 Optical Properties of N-(Hydroxymethyl) Acrylamide Polymer Gel Dosimeters for Radiation Therapy

Authors: Khalid A. Rabaeh, Belal Moftah, Ahmed A. Basfar, Akram A. Almousa

Abstract:

Polymer gel dosimeters are tissue equivalent martial that fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of absorbed radiation dose. Polymer gel dosimeters can uniquely record the radiation dose distribution in three-dimensions (3D). A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 30 Gy. The polymerization degree is directly proportional to absorbed dose received by the polymer gel. UV/Vis spectrophotometer was used to investigate the degree of white color of irradiated NHMA gel which is associated to the degree of polymerization of polymer gel dosimeters. The absorbance increases with absorbed dose for all gel dosimeters in the dose range between 0 and 30 Gy. Dose rate , energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed.

Keywords: dosimeter, gel, spectrophotometer, N-(Hydroxymethyl)acrylamide

Procedia PDF Downloads 469
3949 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 166
3948 The Concept of Community Participation and Identified Tertiary Education Problems, Strategies and Methods

Authors: Ada Adoga James

Abstract:

This paper discussed the concept of community participation and identified tertiary education problems; strategies and methods communities could be involved to reduce conflict witnessed in our tertiary institutions of learning due to government inability to fund education. The paper pointed out that community participation through the use of Parent Teachers Association (PTA), age grade, traditional leaders, village based associations, religious and political organs could be sensitized to raise financial resources. The paper identified different sources of conflicts, the outcome of which causes prolonged academic activities, destruction of lives and properties and in some cased render school environment completely insecure for serious academic activities. It recommends involvement of community participation in assisting government, proper handling of tertiary institutions in management, and more democratic procedure in conflict resolution like cordial relationship between staff, students and trade unions in decision making process.

Keywords: community, conflict resolution, tertiary education, psychology, psychiatry

Procedia PDF Downloads 481
3947 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 41
3946 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

Authors: S. Ramesh, A. S. Sasiraaju, K. Sidhaarth, N. Sudhan Rajkumar, V. Manivel Muralidaran

Abstract:

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.

Keywords: chromoly, gas metal arc weld (GMAW), hardness, multi pass weld, shielding gas composition

Procedia PDF Downloads 216
3945 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP as proposed by A. D. Becke along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: atomic clusters, density functional theory, jellium model, magic clusters, smart nanomaterials

Procedia PDF Downloads 528
3944 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 291
3943 Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma

Authors: Renu Tomar, Hitendra K. Malik, Raj P. Dahiya

Abstract:

Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail.

Keywords: inhomogeneous magnetized plasma, dust charging, soliton collisions, magnetized plasma

Procedia PDF Downloads 471
3942 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl

Abstract:

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Keywords: admixture, organisms, porosity, strength

Procedia PDF Downloads 236
3941 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle

Authors: Huirui Han, Chao Zhang

Abstract:

The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.

Keywords: heat transfer, rod bundle, supercritical water, wall temperature

Procedia PDF Downloads 101
3940 Comparison of Physico-Mechanical Properties of Superplasticizer Stabilized Graphene Oxide and Carbon Nanotubes Reinforced Cement Nanocomposites

Authors: Ramanjit Kaur, N. C. Kothiyal

Abstract:

The present study compares the improved mechanical strength of cement mortar nanocomposites (CNCs) using polycarboxylate superplasticizer (PCE-SP) stabilized graphene oxide or functionalized carbon nanotubes (SP-GO and SP-FCNT) as reinforcing agents. So, in the present study, GO, and FCNT have been sterically stabilized via superplasticizer. The obtained results have shown that a dosage of 0.02 wt% of SP-GO and 0.08 wt% of SP-FCNTs showed an improvement in compressive strength by 23.2% and 16.5%, respectively. On the other hand, incorporation of 0.04% SP-GO and SP-FCNT resulted in an enhanced split tensile strength of 38.5% and 35.8%, respectively, as compared to the control sample at 90 days of curing. Mercury Intrusion Porosimetry (MIP) observations presented a decline in the porosity of 0.02% SP-GO-CNCs and 0.08% SP-FCNT-CNCs by 25% and 31% in comparison to the control sample. The improved hydration of CNCs contributing to the enhancement of physicomechanical strength has also been shown by SEM and XRD studies.

Keywords: graphene oxide, functionalized CNTs, steric stabilization, microstructure, crystalline behavior, pore structure refinement

Procedia PDF Downloads 107
3939 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt

Authors: Mohamed Eladham Fadl M. E. Fadl

Abstract:

In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.

Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques

Procedia PDF Downloads 338
3938 Interpretation of Ultrasonic Backscatter of Linear FM Chirp Pulses from Targets Having Frequency-Dependent Scattering

Authors: Stuart Bradley, Mathew Legg, Lilyan Panton

Abstract:

Ultrasonic remote sensing is a useful tool for assessing the interior structure of complex targets. For these methods, significantly enhanced spatial resolution is obtained if the pulse is coded, for example using a linearly changing frequency during the pulse duration. Such pulses have a time-dependent spectral structure. Interpretation of the backscatter from targets is, therefore, complicated if the scattering is frequency-dependent. While analytic models are well established for steady sinusoidal excitations applied to simple shapes such as spheres, such models do not generally exist for temporally evolving excitations. Therefore, models are developed in the current paper for handling such signals so that the properties of the targets can be quantitatively evaluated while maintaining very high spatial resolution. Laboratory measurements on simple shapes are used to confirm the validity of the models.

Keywords: linear FM chirp, time-dependent acoustic scattering, ultrasonic remote sensing, ultrasonic scattering

Procedia PDF Downloads 317
3937 Long-term Monitoring on Rangelands in Southwest Algeria and Impact of Overgrazing and Droughts on Biodiversity and Soil: Case of the Rogassa Steppe (Wilaya of El Bayadh)

Authors: Slimani Halima

Abstract:

One of the main problems of degradation of arid steppe rangelands in the southern Mediterranean is the loss of plant diversity and changes in soil properties. During the last decades, these rangelands faced two main driving forces: climate through more or less lasting and recurrent droughts and overgrazing by sheep. In the present work, the preexisting system was an arid steppe with alfa grass (Stipa tenacissima L.) as the dominant plant, which was considered to be the "keystone" species toward the whole ecosystem structure and functioning. Vegetation and soil change was monitored for 45 years along a grazing intensity gradient. Changes in species richness and diversity, in the vegetation and in the soil, enabled to better understand climate fluctuations effects in comparison to overgrazing ones. The aim is to assess the impacts of grazing and climatic variability and change on biodiversity,vegetation and soil over a period of 45 years, based on data from seven reference years.

Keywords: biodiversity, desertification, droughts, el bayadh, overgrazing, soil, steppe

Procedia PDF Downloads 107
3936 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 323
3935 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 472
3934 Comparative Study on Different Type of Shear Connectors in Composite Slabs

Authors: S. Subrmanian, A. Siva, R. Raghul

Abstract:

In modern construction industry, usage of cold form composite slab has its scope widely due to its light weight, high structural properties and economic factor. To enhance the structural integrity, mechanical interlocking or frictional interlocking was introduced. The role of mechanical interlocking or frictional interlocking is to increase the longitudinal shear between the profiled sheet and concrete. This paper deals with the experimental evaluation of three types of mechanical interlocking devices namely normal stud shear connector, J-Type shear connector, U-Type shear connector. An attempt was made to evolve the shear connector which can be suitable for the composite slab as an interlocking device. Totally six number of composite slabs have been experimented with three types of shear connectors and comparison study is made. The outcome was compared with numerical model was created by ABAQUS software and analyzed for comparative purpose. The result was U-Type shear connector provided better performance and resistance.

Keywords: composite slabs, shear connector, end slip, longitudinal shear

Procedia PDF Downloads 326
3933 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 166
3932 Synthesis, Characterization, and Evaluation of New Series of Oil Sorbers Based on Maleate Esters

Authors: Nora A. Hamad, Ayman M. Atta, Adel A. H. Abdel-Rahman

Abstract:

Two malice anhydride esters were prepared using long chain aliphatic alcohols (C8H17OH and C12H25OH, 1:1 mole ratio). Three series of crosslinked homo and copolymers of maleate esters with octadecyl acrylate and acrylic acid were prepared respectively through suspension copolymerization. The monomers were mixed with 0.02 Wt% of BP initiator, PVA 1% (170 ml for each 100g of monomers) and different weight ratios of DVB crosslinked (1% and 4%) in cyclohexane. The prepared crosslinked homo and copolymers were characterized by SEM, TGA and FTIR spectroscopic analyses. The prepared polymers were coated onto poly (ethylene terephethalate) nonwoven fiber (NWPET). The effect of copolymerization feed composition, crosslinker wt% and reaction media or solvent on swelling properties of crosslinked polymers were studied through the oil absorption tests in toluene and 10% of diluted crude oil with toluene.

Keywords: acrylic acid, crosslinked copolymers, maleate ester, poly(ethylene terephethalate) nonwoven fiber (NWPET), oil absorbency, octadecyl acrylat

Procedia PDF Downloads 392