Search results for: language learning
Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 74Evaluation: Developing An Appropriate Survey Instrument For E-Learning
Authors: Brenda Ravenscroft, Ulemu Luhanga, Bev King
Abstract:
A comprehensive evaluation of online learning needs to include a blend of educational design, technology use, and online instructional practices that integrate technology appropriately for developing and delivering quality online courses. Research shows that classroom-based evaluation tools do not adequately capture the dynamic relationships between content, pedagogy, and technology in online courses. Furthermore, studies suggest that using classroom evaluations for online courses yields lower than normal scores for instructors, and may affect faculty negatively in terms of administrative decisions. In 2014, the Faculty of Arts and Science at Queen’s University responded to this evidence by seeking an alternative to the university-mandated evaluation tool, which is designed for classroom learning. The Faculty is deeply engaged in e-learning, offering large variety of online courses and programs in the sciences, social sciences, humanities and arts. This paper describes the process by which a new student survey instrument for online courses was developed and piloted, the methods used to analyze the data, and the ways in which the instrument was subsequently adapted based on the results. It concludes with a critical reflection on the challenges of evaluating e-learning. The Student Evaluation of Online Teaching Effectiveness (SEOTE), developed by Arthur W. Bangert in 2004 to assess constructivist-compatible online teaching practices, provided the starting point. Modifications were made in order to allow the instrument to serve the two functions required by the university: student survey results provide the instructor with feedback to enhance their teaching, and also provide the institution with evidence of teaching quality in personnel processes. Changes were therefore made to the SEOTE to distinguish more clearly between evaluation of the instructor’s teaching and evaluation of the course design, since, in the online environment, the instructor is not necessarily the course designer. After the first pilot phase, involving 35 courses, the results were analyzed using Stobart's validity framework as a guide. This process included statistical analyses of the data to test for reliability and validity, student and instructor focus groups to ascertain the tool’s usefulness in terms of the feedback it provided, and an assessment of the utility of the results by the Faculty’s e-learning unit responsible for supporting online course design. A set of recommendations led to further modifications to the survey instrument prior to a second pilot phase involving 19 courses. Following the second pilot, statistical analyses were repeated, and more focus groups were used, this time involving deans and other decision makers to determine the usefulness of the survey results in personnel processes. As a result of this inclusive process and robust analysis, the modified SEOTE instrument is currently being considered for adoption as the standard evaluation tool for all online courses at the university. Audience members at this presentation will be stimulated to consider factors that differentiate effective evaluation of online courses from classroom-based teaching. They will gain insight into strategies for introducing a new evaluation tool in a unionized institutional environment, and methodologies for evaluating the tool itself.Keywords: evaluation, online courses, student survey, teaching effectiveness
Procedia PDF Downloads 269Parvi̇z Jabrail's Novel 'in Foreign Language': Delimitation of Postmodernism with Modernism
Authors: Nargiz Ismayilova
Abstract:
The issue of modernism and the concept of postmodernism has been the focus of world researchers for many years, and there are very few researchers who have come to a common denominator about this term. During the independence period, the expansion of the relations of Azerbaijani literature with the world has led to the spread of many currents and tendencies formed in the West to the literary environment in our country. In this context, the works created in our environment are distinguished by their extreme richness in terms of subject matter and diversity in terms of genre. As an interesting example of contemporary postmodern prose in Azerbaijan, Parviz Jabrayil's novel "In a Foreign Language" pays attention with its more different plotline. The disagreement exists among the critics about the novel. Some are looking for high artistry in work; others are satisfied with the elements of postmodernism in work. Delimitation of the border between modernism and postmodernism can serve to carry out a deep scientific study of the novel. The novel depicts the world in the author's consciousness against the background of water shortage (thirst) in the Old City (Icharishahar). The author deconstructs today's Ichari Shahar mould. Along with modernism, elements of postmodernism occupy a large place in the work. When we look at the general tendencies of postmodernist art, we see that science and individuality are questioned, criticizing the sharp boundaries of modernism and the negativity of these restrictions, and modernism offers alternatives to artistic production by identifying its negatives and shortcomings in the areas of artistic freedom. The novel is extremely interesting in this point of view.Keywords: concept of postmodernism, modernism, delimitation, political postmodernism, modern postmodern prose, Azerbaijani literature, novel, comparison, world literature, analysis
Procedia PDF Downloads 140Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 148Preventing the Drought of Lakes by Using Deep Reinforcement Learning in France
Authors: Farzaneh Sarbandi Farahani
Abstract:
Drought and decrease in the level of lakes in recent years due to global warming and excessive use of water resources feeding lakes are of great importance, and this research has provided a structure to investigate this issue. First, the information required for simulating lake drought is provided with strong references and necessary assumptions. Entity-Component-System (ECS) structure has been used for simulation, which can consider assumptions flexibly in simulation. Three major users (i.e., Industry, agriculture, and Domestic users) consume water from groundwater and surface water (i.e., streams, rivers and lakes). Lake Mead has been considered for simulation, and the information necessary to investigate its drought has also been provided. The results are presented in the form of a scenario-based design and optimal strategy selection. For optimal strategy selection, a deep reinforcement algorithm is developed to select the best set of strategies among all possible projects. These results can provide a better view of how to plan to prevent lake drought.Keywords: drought simulation, Mead lake, entity component system programming, deep reinforcement learning
Procedia PDF Downloads 95The Collaborative Advocacy Work of Language Teachers
Authors: Sora Suh, Catherine Michener
Abstract:
This paper examines the collaborative forms of advocacy that a group of four public school teachers took for their emergent bilingual students in one public school district. While teacher advocacy takes many forms in and out of the classroom, much advocacy work is done by individuals and less by collective action. As a result, individual teachers risk isolation or marginalization in their school contexts when they advocate for immigrant youth. This paper is intended to contribute to the documentation and understanding of teachers’ advocacy work as a collaborative act in teacher education research. The increase of ELs in US classrooms and a corresponding lack of teacher preparation to meet the needs of ELs has motivated the training of educators in linguistically responsive education (e.g., ESL, sheltered English instruction [SEI], bilingual education). Drawing from educational theories of linguistically responsive teaching for preparing educators, we trace the linguistically responsive advocacy work of the teachers. The paper is a multiple case study that tracks how teachers’ discussions on advocacy during a teacher preparation program leading to collaborative actions in their daily teaching lives in and out of school. Data collected includes online discussion forums on the topic of advocacy, course assignments on the topic of advocacy, video-audio recordings of classroom teaching observations, and video-audio recordings of individual and focus group interviews. The findings demonstrate that the teachers’ understanding of advocacy developed through collaborative partnerships formed in the teacher preparation program and grew into active forms of collaborative advocacy in their teaching practice in and out of school. The teachers formed multi-level and collaborative partnerships with teachers, families, community members, policymakers from the local government, and educational researchers to advocate for their emergent bilingual students by planning advocacy events such as new family orientations for emergent bilinguals, professional development for general education teachers on the topic of linguistically responsive instruction, and family nights hosted by the district. The paper’s findings present types of advocacy work in which teachers engage (pedagogical, curricular, out-of-school work) and provide evidence of collaborative advocacy work by a group of engaged educators. The paper highlights the increased agency and effective advocacy of teachers through teacher education and collaborative partnerships and suggests a need for more research on collaborative forms of teacher advocacy for emergent bilinguals.Keywords: language education, teacher advocacy, language instruction, teacher education
Procedia PDF Downloads 120Variables, Annotation, and Metadata Schemas for Early Modern Greek
Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara
Abstract:
Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.
Procedia PDF Downloads 72Life Stories of Adult Amateur Cellists That Inspire Them to Take Individual Lessons: A Narrative Inquiry
Authors: A. Marais
Abstract:
A challenging aspect of teaching cello to novice adult learners is finding adequate lesson material and applying relevant teaching methodologies. It could play a crucial role in adult learners' decision to commence or stop taking music lessons. This study contributes to the theory and practises of continuing education. This study is important to lifelong learning, especially with the focus on adult teaching and learning and the difficulties concerning these themes. The research problem identified for this study is we are not aware of adults' life stories; thus, cello lesson material is not always relevant for adult's specific needs for motivation and goals for starting cello lessons. In my experience, an adult does not necessarily want to play children songs when they learn a new instrument. They want material and lessons fitted to adult learners. Adults also learn differently from younger beginners. Adults ask questions such as how and why, while children more readily accept what is being taught. This research creates awareness of adults' musical needs and learning methods. If every adult shares their own story for commencing and continuing with cello lessons, material should be created, revised, or adapted for more individually appropriate lessons. A number of studies show that adults taking music lessons experience a decrease in feelings of loneliness and isolation. It gives adults a sense of wellbeing and can help improve immune systems. The purpose of this research study will be to discover the life stories of adult amateur cellists. At this stage in the research, the life stories of amateur cellists can generally be defined as personal reflections of their motivations for and experiences of commencing and continuing with individual lessons. The findings of this study will contribute to the development of cello lesson material for adult beginners based on their stories. This research could also encourage adults to commence with music lessons and could, in that way, contribute to their quality of life. Music learners become aware of deep spiritual, emotional, and social values incorporated or experienced through musical learning. This will be a qualitative study with a narrative approach making use of oral history. The chosen method will encapsulate the stories of amateur individual adults starting and continuing with cello lessons. The narrative method entails experiences as expressed in lived and told stories of individuals. Oral history is used as part of the narrative method and entails gathering of personal reflections of events and their cause and effects from an individual or several individuals. These findings from this study will contribute to adult amateur cellists' motivations to continue with music lessons and inspire others to commence. The inspiring life stories of the amateur cellists would provide insight into finding and creating new cello lesson material and enhance existing teaching methodologies for adult amateur cellists.Keywords: adult, amateur, cello, education, learning, music, stories
Procedia PDF Downloads 137Navigating Complex Communication Dynamics in Qualitative Research
Authors: Kimberly M. Cacciato, Steven J. Singer, Allison R. Shapiro, Julianna F. Kamenakis
Abstract:
This study examines the dynamics of communication among researchers and participants who have various levels of hearing, use multiple languages, have various disabilities, and who come from different social strata. This qualitative methodological study focuses on the strategies employed in an ethnographic research study examining the communication choices of six sets of parents who have Deaf-Disabled children. The participating families varied in their communication strategies and preferences including the use of American Sign Language (ASL), visual-gestural communication, multiple spoken languages, and pidgin forms of each of these. The research team consisted of two undergraduate students proficient in ASL and a Deaf principal investigator (PI) who uses ASL and speech as his main modes of communication. A third Hard-of-Hearing undergraduate student fluent in ASL served as an objective facilitator of the data analysis. The team created reflexive journals by audio recording, free writing, and responding to team-generated prompts. They discussed interactions between the members of the research team, their evolving relationships, and various social and linguistic power differentials. The researchers reflected on communication during data collection, their experiences with one another, and their experiences with the participating families. Reflexive journals totaled over 150 pages. The outside research assistant reviewed the journals and developed follow up open-ended questions and prods to further enrich the data. The PI and outside research assistant used NVivo qualitative research software to conduct open inductive coding of the data. They chunked the data individually into broad categories through multiple readings and recognized recurring concepts. They compared their categories, discussed them, and decided which they would develop. The researchers continued to read, reduce, and define the categories until they were able to develop themes from the data. The research team found that the various communication backgrounds and skills present greatly influenced the dynamics between the members of the research team and with the participants of the study. Specifically, the following themes emerged: (1) students as communication facilitators and interpreters as barriers to natural interaction, (2) varied language use simultaneously complicated and enriched data collection, and (3) ASL proficiency and professional position resulted in a social hierarchy among researchers and participants. In the discussion, the researchers reflected on their backgrounds and internal biases of analyzing the data found and how social norms or expectations affected the perceptions of the researchers in writing their journals. Through this study, the research team found that communication and language skills require significant consideration when working with multiple and complex communication modes. The researchers had to continually assess and adjust their data collection methods to meet the communication needs of the team members and participants. In doing so, the researchers aimed to create an accessible research setting that yielded rich data but learned that this often required compromises from one or more of the research constituents.Keywords: American Sign Language, complex communication, deaf-disabled, methodology
Procedia PDF Downloads 122The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning
Procedia PDF Downloads 154Inclusive Education in South African Universities: Pre-Service Teachers’ Experiences
Authors: Cina Mosito, Toyin Mary Adewumi, Charlene Nissen
Abstract:
One of the goals of inclusive education is to provide learners with suitable learning environments and prospects to best attain their potential. This study sought to determine the experiences of studying inclusive education on pre-service teachers’ teaching within the South African education context. A purposeful sample comprising 6 pre-service teachers was selected from a university of technology located in the Western Cape South Africa. Data were collected using open-ended questionnaires, which were exploratory in nature and analyzed thematically. The findings supported significant proportions of experiences as self-reported by pre-service teachers. The pre-service teachers’ experiences of studying inclusive education included inclusive education as an “eye-opener” to the fact that learners experiencing various barriers to learning can be accommodated in the regular classrooms, exposure to some aspects of inclusive education, such as diversity, learners’ rights, and curriculum differentiation. It was also revealed that studying inclusive education made pre-service teachers love and enjoy teaching more. The study shows that awareness of inclusive education has influenced pre-service teachers in South African schools.Keywords: experience, inclusive education, pre-service teacher, South Africa
Procedia PDF Downloads 210Transdisciplinary Pedagogy: An Arts-Integrated Approach to Promote Authentic Science, Technology, Engineering, Arts, and Mathematics Education in Initial Teacher Education
Authors: Anne Marie Morrin
Abstract:
This paper will focus on the design, delivery and assessment of a transdisciplinary STEAM (Science, Technology, Engineering, Arts, and Mathematics) education initiative in a college of education in Ireland. The project explores a transdisciplinary approach to supporting STEAM education where the concepts, methodologies and assessments employed derive from visual art sessions within initial teacher education. The research will demonstrate that the STEAM Education approach is effective when visual art concepts and methods are placed at the core of the teaching and learning experience. Within this study, emphasis is placed on authentic collaboration and transdisciplinary pedagogical approaches with the STEAM subjects. The partners included a combination of teaching expertise in STEM and Visual Arts education, artists, in-service and pre-service teachers and children. The inclusion of all stakeholders mentioned moves towards a more authentic approach where transdisciplinary practice is at the core of the teaching and learning. Qualitative data was collected using a combination of questionnaires (focused and open-ended questions) and focus groups. In addition, the data was collected through video diaries where students reflected on their visual journals and transdisciplinary practice, which gave rich insight into participants' experiences and opinions on their learning. It was found that an effective program of STEAM education integration was informed by co-teaching (continuous professional development), which involved a commitment to adaptable and flexible approaches to teaching, learning, and assessment, as well as the importance of continuous reflection-in-action by all participants. The delivery of a transdisciplinary model of STEAM education was devised to reconceptualizatise how individual subject areas can develop essential skills and tackle critical issues (such as self-care and climate change) through data visualisation and technology. The success of the project can be attributed to the collaboration, which was inclusive, flexible and a willingness between various stakeholders to be involved in the design and implementation of the project from conception to completion. The case study approach taken is particularistic (focusing on the STEAM-ED project), descriptive (providing in-depth descriptions from varied and multiple perspectives), and heuristic (interpreting the participants’ experiences and what meaning they attributed to their experiences).Keywords: collaboration, transdisciplinary, STEAM, visual arts education
Procedia PDF Downloads 53A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 198An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 106Effectiveness of Cold Calling on Students’ Behavior and Participation during Class Discussions: Punishment or Opportunity to Shine
Authors: Maimuna Akram, Khadija Zia, Sohaib Naseer
Abstract:
Pedagogical objectives and the nature of the course content may lead instructors to take varied approaches to selecting a student for the cold call, specifically in a studio setup where students work on different projects independently and show progress work time to time at scheduled critiques. Cold-calling often proves to be an effective tool in eliciting a response without enforcing judgment onto the recipients. While there is a mixed range of behavior exhibited by students who are cold-called, a classification of responses from anxiety-provoking to inspiring may be elicited; there is a need for a greater understanding of utilizing the exchanges in bringing about fruitful and engaging outcomes of studio discussions. This study aims to unravel the dimensions of utilizing the cold-call approach in a didactic exchange within studio pedagogy. A questionnaire survey was conducted in an undergraduate class at Arts and Design School. The impact of cold calling on students’ participation was determined through various parameters, including course choice, participation frequency, students’ comfortability, and teaching methodology. After analyzing the surveys, specific classroom teachers were interviewed to provide a qualitative perspective of the faculty. It was concluded that cold-calling increases students’ participation frequency and also increases preparation for class. Around 67% of students responded that teaching methods play an important role in learning activities and students’ participation during class discussions. 84% of participants agreed that cold calling is an effective way of learning. According to research, cold-calling can be done in large numbers without making students uncomfortable. As a result, the findings of this study support the use of this instructional method to encourage more students to participate in class discussions.Keywords: active learning, class discussion, class participation, cold calling, pedagogical methods, student engagement
Procedia PDF Downloads 42Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body
Authors: Alex Elentukh
Abstract:
The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering
Procedia PDF Downloads 107Articulating Competencies Confidently: Employability in the Curriculum
Authors: Chris Procter
Abstract:
There is a significant debate on the role of University education in developing or teaching employability skills. Should higher education attempt to do this? Is it the best place? Is it able to do so? Different views abound, but the question is wrongly posed – one of the reasons that previous employability initiatives foundered (e.g., in the UK). Our role is less to teach than to guide, less to develop and more to help articulate: “the mind is not a vessel to be filled, but a fire to be lit” (Plutarch). This paper then addresses how this can be achieved taking into account criticism of employability initiatives as well as relevant learning theory. It discusses the experience of a large module which involved students being assessed on all stages of application for a live job description together with reflection on their professional development. The assessment itself adopted a Patchwork Text approach as a vehicle for learning. Students were guided to evaluate their strengths and areas to be developed, articulate their competencies, and reflect upon their development, moving on to new Thresholds of Employability. The paper uses the student voices to express the progress they made. It concludes that employability can and should be an effective part of the higher education curriculum when designed to encourage students to confidently articulate their competencies and take charge of their own professional development.Keywords: competencies, employability, patchwork assessment, threshold concepts
Procedia PDF Downloads 223Spelling Errors in Persian Children with Developmental Dyslexia
Authors: Mohammad Haghighi, Amineh Akhondi, Leila Jahangard, Mohammad Ahmadpanah, Masoud Ansari
Abstract:
Background: According to the recent estimation, approximately 4%-12% percent of Iranians have difficulty in learning to read and spell possibly as a result of developmental dyslexia. The study was planned to investigate spelling error patterns among Persian children with developmental dyslexia and compare that with the errors exhibited by control groups Participants: 90 students participated in this study. 30 students from Grade level five, diagnosed as dyslexics by professionals, 30 normal 5th Grade readers and 30 younger normal readers. There were 15 boys and 15 girls in each of the groups. Qualitative and quantitative methods for analysis of errors were used. Results and conclusion: results of this study indicate similar spelling error profiles among dyslexics and the reading level matched groups, and these profiles were different from age-matched group. However, performances of dyslexic group and reading level matched group were different and inconsistent in some cases.Keywords: spelling, error types, developmental dyslexia, Persian, writing system, learning disabilities, processing
Procedia PDF Downloads 432Ambisyllabic Conditioning in English: Evidence from the Accent of Nigerian Speakers of English
Authors: Nkereke Mfon Essien
Abstract:
In an ambisyllabic environment, one consonant sound simultaneously assumes both the coda and onset positions of a word due to its structural proclivity to affect two phonological processes or repair two ill-formed sequences in those syllable positions at the same time. This study sets out to examine the structural conditions that trigger this not-so-common phonological privilege for consonant sounds in the English language and Nigerian English and if such constraints could have any correspondence in the language studied. Data for the study were obtained from a native speaker of English who was the control and twenty (20) educated Nigerian speakers of English from the three ethnic/linguistic groups in Nigeria. Preliminary findings from the data show that ambisyllabicity in English is triggered mainly by stress, a condition which causes a consonant in a stressed syllable to become glottalised and simultaneously devoices the nearest voiced consonant in the next syllable. For example, in the word coupler,/'kʌplɜr/ is realized as ['kʌˀpl̥ɜr]. In some Nigerian English, preliminary findings show that ambisyllabicity is triggered by a sequence of intervocalic short, high central vowels and a coda nasal. Since the short vowel may not occur in an open syllable, the nasal serves to close the impermissible open syllable. However, since the Nigerian English foot structure does not permit a CVC.V syllable, the same coda nasal simultaneously repairs the impermissible syllable foot to (CV.CV) by applying the Maximal Onset Principle since this is a preliminary investigation, a conclusion would not suffice yet.Keywords: ambisyllabicity, nasal, coda, stress, phonological process, syllable, foot
Procedia PDF Downloads 27Investigating Elements That Influence Higher Education Institutions’ Digital Maturity
Authors: Zarah M. Bello, Nathan Baddoo, Mariana Lilley, Paul Wernick
Abstract:
In this paper, we present findings from a multi-part study to evaluate candidate elements reflecting the level of digital capability maturity (DCM) in higher education and the relationship between these elements. We will use these findings to propose a model of DCM for educational institutions. We suggest that the success of learning in higher education is dependent in part on the level of maturity of digital capabilities of institutions as well as the abilities of learners and those who support the learning process. It is therefore important to have a good understanding of the elements that underpin this maturity as well as their impact and interactions in order to better exploit the benefits that technology presents to the modern learning environment and support its continued improvement. Having identified ten candidate elements of digital capability that we believe support the level of a University’s maturity in this area as well as a number of relevant stakeholder roles, we conducted two studies utilizing both quantitative and qualitative research methods. In the first of these studies, 85 electronic questionnaires were completed by various stakeholders in a UK university, with a 100% response rate. We also undertook five in-depth interviews with management stakeholders in the same university. We then utilized statistical analysis to process the survey data and conducted a textual analysis of the interview transcripts. Our findings support our initial identification of candidate elements and support our contention that these elements interact in a multidimensional manner. This multidimensional dynamic suggests that any proposal for improvement in digital capability must reflect the interdependency and cross-sectional relationship of the elements that contribute to DCM. Our results also indicate that the notion of DCM is strongly data-centric and that any proposed maturity model must reflect the role of data in driving maturity and improvement. We present these findings as a key step towards the design of an operationalisable DCM maturity model for universities.Keywords: digital capability, elements, maturity, maturity framework, university
Procedia PDF Downloads 147Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach
Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed
Abstract:
Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model
Procedia PDF Downloads 466Teacher’s Perception of Dalcroze Method Course as Teacher’s Enhancement Course: A Case Study in Hong Kong
Authors: Ka Lei Au
Abstract:
The Dalcroze method has been emerging in music classrooms, and music teachers are encouraged to integrate music and movement in their teaching. Music programs in colleges in Hong Kong have been introducing method courses such as Orff and Dalcroze method in music teaching as teacher’s education program. Since the targeted students of the course are music teachers who are making the decision of what approach to use in their classroom, their perception is significantly valued to identify how this approach is applicable in their teaching in regards to the teaching and learning culture and environment. This qualitative study aims to explore how the Dalcroze method as a teacher’s education course is perceived by music teachers from three aspects: 1) application in music teaching, 2) self-enhancement, 3) expectation. Through the lens of music teachers, data were collected from 30 music teachers who are taking the Dalcroze method course in music teaching in Hong Kong by the survey. The findings reveal the value and their intention of the Dalcroze method in Hong Kong. It also provides a significant reference for better development of such courses in the future in adaption to the culture, teaching and learning environment and teacher’s, student’s and parent’s perception of this approach.Keywords: Dalcroze method, music teaching, perception, self-enhancement, teacher’s education
Procedia PDF Downloads 410Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 96Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan
Abstract:
The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.Keywords: cognitive load theory, instructional design, physical product interactions, usability design
Procedia PDF Downloads 541How Validated Nursing Workload and Patient Acuity Data Can Promote Sustained Change and Improvements within District Health Boards. the New Zealand Experience
Authors: Rebecca Oakes
Abstract:
In the New Zealand public health system, work has been taking place to use electronic systems to convey data from the ‘floor to the board’ that makes patient needs, and therefore nursing work, visible. For nurses, these developments in health information technology puts us in a very new and exciting position of being able to articulate the work of nursing through a language understood at all levels of an organisation, the language of acuity. Nurses increasingly have a considerable stake-hold in patient acuity data. Patient acuity systems, when used well, can assist greatly in demonstrating how much work is required, the type of work, and when it will be required. The New Zealand Safe Staffing Unit is supporting New Zealand nurses to create a culture of shared governance, where nursing data is informing policies, staffing methodologies and forecasting within their organisations. Assisting organisations to understand their acuity data, strengthening user confidence in using electronic patient acuity systems, and ensuring nursing and midwifery workload is accurately reflected is critical to the success of the safe staffing programme. Nurses and midwives have the capacity via an acuity tool to become key informers of organisational planning. Quality patient care, best use of health resources and a quality work environment are essential components of a safe, resilient and well resourced organisation. Nurses are the key informers of this information. In New Zealand a national level approach is paving the way for significant changes to the understanding and use of patient acuity and nursing workload information.Keywords: nursing workload, patient acuity, safe staffing, New Zealand
Procedia PDF Downloads 387Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 313A Corpus-based Study of Adjuncts in Colombian English as a Second Language (ESL) Argumentative Essays
Authors: E. Velasco
Abstract:
Meeting high standards of writing in a Second Language (L2) is extremely important for many students who wish to undertake studies at universities in both English and non-English speaking countries. University lecturers in English speaking countries continue to express dissatisfaction with the apparent poor quality of essay writing skills displayed by English as a Second Language (ESL) students, whose essays are often criticised for their lack of cohesion and coherence. These critiques have extended to contexts such as Colombia, where many ESL students are criticised for their inability to write high-quality academic texts in L2-English, particularly at the tertiary level. If Colombian ESL students are expected to meet high standards of writing when studying locally and abroad, it makes sense to carry out specific research that can perhaps lead to recommendations to support their quest for improving argumentative strategies. Employing Corpus Linguistics methods within a Learner Corpus Research framework, and a combination of Log-Likelihood and Bayes Factor measures, this paper investigated argumentative essays written by Colombian ESL students. The study specifically aimed to analyse conjunctive adjuncts in argumentative essays to find out how Colombian ESL students connect their ideas in discourse. Results suggest that a) Colombian ESL learners need explicit instruction on specific areas of conjunctive adjuncts to counteract overuse, underuse and misuse; b) underuse of endophoric and evidential adjuncts highlights gaps between IELTS-like essays and good quality tertiary-level essays and published papers, and these gaps are linked to prior knowledge brought into writing task, rhetorical functions in writing, and research processes before writing takes place; c) both Colombian ESL learners and L1-English writers (in a reference corpus) overuse some adjuncts and underuse endophoric and evidential adjuncts, when compared to skilled L1-English and L2-English writers, so differences in frequencies of adjuncts has little to do with the writers’ L1, and differences are rather linked to types of essays writers produce (e.g. ESL vs. university essays). Ender Velasco: The pedagogical recommendations deriving from the study are that: a) Colombian ESL learners need to be shown that overuse is not the only way of giving cohesion to argumentative essays and there are other alternatives to cohesion (e.g., implicit adjuncts, lexical chains and collocations); b) syllabi and classroom input need to raise awareness of gaps in writing skills between IELTS-like and tertiary-level argumentative essays, and of how endophoric and evidential adjuncts are used to refer to anaphoric and cataphoric sections of essays, and to other people’s work or ideas; c) syllabi and classroom input need to include essay-writing tasks based on previous research/reading which learners need to incorporate into their arguments, and tasks that raise awareness of referencing systems (e.g., APA); d) classroom input needs to include explicit instruction on use of punctuation, functions and/or syntax with specific conjunctive adjuncts such as for example, for that reason, although, despite and nevertheless.Keywords: argumentative essays, colombian english as a second language (esl) learners, conjunctive adjuncts, corpus linguistics
Procedia PDF Downloads 92Multi-Label Approach to Facilitate Test Automation Based on Historical Data
Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally
Abstract:
The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.Keywords: machine learning, multi-class, multi-label, supervised learning, test automation
Procedia PDF Downloads 136Challenges in Translating Malay Idiomatic Expressions: A Study
Authors: Nor Ruba’Yah Binti Abd Rahim, Norsyahidah Binti Jaafar
Abstract:
Translating Malay idiomatic expressions into other languages presents unique challenges due to the deep cultural nuances and linguistic intricacies embedded within these expressions. This study examined these challenges through a two-pronged methodology: a comparative analysis using survey questionnaires and a quiz administered to 50 semester 6 students who are taking Translation 1 course, and in-depth interviews with their lecturers. The survey aimed to capture students’ experiences and difficulties in translating selected Malay idioms into English, highlighting common errors and misunderstandings. Complementing this, interviews with lecturers provided expert insights into the nuances of these expressions and effective translation strategies. The findings revealed that literal translations often fail to convey the intended meanings, underscoring the importance of cultural competence and contextual awareness. The study also identified key factors that contribute to successful translations, such as the translator’s familiarity with both source and target cultures and their ability to adapt expressions creatively. This research contributed to the field of translation studies by offering practical recommendations for improving the translation of idiomatic expressions, thereby enhancing cross-cultural communication. The insights gained from this study are valuable for translators, educators, and students, emphasizing the need for a nuanced approach that respects the cultural richness of the source language while ensuring clarity in the target language.Keywords: idiomatic expressions, cultural competence, translation strategies, cross-cultural communication, students’ difficulties
Procedia PDF Downloads 22Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 45