Search results for: hydraulic diameter effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16040

Search results for: hydraulic diameter effect

11000 Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions

Authors: A. I. O. Zaid, A. M. Attieh, S. M. A. Al Qawabah

Abstract:

Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together.

Keywords: ECAP, aluminum, cast, mechanical characteristics, Mo grain refiner

Procedia PDF Downloads 458
10999 Effect of Manual Progressive Ischemic Pressure versus Post Isometric Facilitation in the Treatment of Latent Myofascial Trigger Points in Mechanical Neck Pain

Authors: Mohamed M. Diab, Fahmy E. Mohamed, Alaa Balbaa

Abstract:

Background: Myofascial pain syndrome a common type of non-articular musculoskeletal pain, is a condition associated with regional pain and muscle tenderness characterized by the presence of hypersensitive nodules. Objectives: the purpose of this study is to compare between the effects of manual progressive ischemic pressure versus the effect of post isometric facilitation in the treatment of Rhomboid latent myofascial trigger points. Methods: six patients had participated in this study. Patients divided into two groups. Group A treated by manual progressive ischemic pressure and traditional physical therapy program. Group B treated by post isometric facilitation and traditional physical therapy program. Treatment program was for 6 sessions over two week’s period. Result: Statistical analysis revealed that there is no significant difference in post treatment from pretreatment in pain severity (VAS) in myofascial trigger points with Rhomboid muscles) and Pain pressure threshold (PPT) for tenderness at both groups (A,B). Conclusion: ischemic pressure technique appear to be no more effective than post isometric facilitation in treatment of rhomboids latent myofacial trigger point.

Keywords: Rhmoiboid trigger point, myofacila trigger point, ischemic pressure, post isometric facilitation

Procedia PDF Downloads 294
10998 Nostalgia in Photographed Books for Children – the Case of Photography Books of Children in the Kibbutz

Authors: Ayala Amir

Abstract:

The paper presents interdisciplinary research which draws on the literary study and the cultural study of photography to explore a literary genre defined by nostalgia – the photographed book for children. This genre, which was popular in the second half of the 20th century, presents the romantic, nostalgic image of childhood created in the visual arts in the 18th century (as suggested by Ann Higonnet). At the same time, it capitalizes on the nostalgia inherent in the event of photography as formulated by Jennifer Green-Lewis: photography frames a moment in the present while transforming it into a past longed for in the future. Unlike Freudian melancholy, nostalgia is an effect that enables representation by acknowledging the loss and containing it in the very experience of the object. The representation and preservation of the lost object (nature, childhood, innocence) are in the center of the genre of children's photography books – a modern version of ancient pastoral. In it, the unique synergia of word and image results in a nostalgic image of childhood in an era already conquered by modernization. The nostalgic effect works both in the representation of space – an Edenic image of nature already shadowed by its demise, and of time – an image of childhood imbued by what Gill Bartholnyes calls the "looking backward aesthetics" – under the sign of loss. Little critical attention has been devoted to this genre with the exception of the work of Bettina Kümmerling-Meibauer, who noted the nostalgic effect of the well-known series of photography books by Astrid Lindgren and Anna Riwkin-Brick. This research aims to elaborate Kümmerling-Meibauer's approach using the theories of the study of photography, word-image studies, as well as current studies of childhood. The theoretical perspectives are implemented in the case study of photography books created in one of the most innovative social structures in our time – the Israeli Kibbutz. This communal way of life designed a society where children will experience their childhood in a parentless rural environment that will save them from the fate of the Oedipal fall. It is suggested that in documenting these children in a fictional format, photographers and writers, images and words cooperated in creating nostalgic works situated on the border between nature and culture, imagination and reality, utopia and its realization in history.

Keywords: nostalgia, photography , childhood, children's books, kibutz

Procedia PDF Downloads 126
10997 Gas-Liquid Flow Regimes in Vertical Venturi Downstream of Horizontal Blind-Tee

Authors: Muhammad Alif Bin Razali, Cheng-Gang Xie, Wai Lam Loh

Abstract:

A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. For an accurate determination of individual phase fraction and flowrate, a gas-liquid flow ideally needs to be well mixed in the venturi measurement section. Partial flow mixing is achieved by installing a venturi vertically downstream of the blind-tee pipework that ‘homogenizes’ the incoming horizontal gas-liquid flow. In order to study in-depth the flow-mixing effect of the blind-tee, gas-liquid flows are captured at blind-tee and venturi sections by using a high-speed video camera and a purpose-built transparent test rig, over a wide range of superficial liquid velocities (0.3 to 2.4m/s) and gas volume fractions (10 to 95%). Electrical capacitance sensors are built to measure the instantaneous holdup (of oil-gas flows) at the venturi inlet and throat. Flow regimes and flow (a)symmetry are investigated based on analyzing the statistical features of capacitance sensors’ holdup time-series data and of the high-speed video time-stacked images. The perceived homogenization effect of the blind-tee on the incoming intermittent horizontal flow regimes is found to be relatively small across the tested flow conditions. A horizontal (blind-tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters).

Keywords: blind-tee, flow visualization, gas-liquid two-phase flow, MPFM

Procedia PDF Downloads 112
10996 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 355
10995 Entrepreneurship, Institutional Quality, and Macroeconomic Performance: Evidence from Nigeria

Authors: Cleopatra Oluseye Ibukun

Abstract:

Following the endogenous growth theory, entrepreneurship has been considered pivotal to economic growth and development, particularly in developing countries like Nigeria. Meanwhile, efforts to reduce unemployment has yielded minimal result with over 36% of youth unemployment and a dwindling economic growth despite the country’s natural and human resource endowment. This study, therefore, investigates the effects of entrepreneurship and institutional quality on economic growth and unemployment in Nigeria over the period 1996 to 2018. The data is obtained from the National Bureau of Statistics (NBS), World Bank’s World Development Indicators (WDI), and the World Bank’s World Governance Indicators (WGI). The study period is guided by the availability of data, and the study employs both descriptive and econometric techniques of analysis (specifically, the Auto-regressive Distributed Lag Approach). This approach is preferable given that the variables are stationary at the first difference, while the bounds test suggests the existence of co-integration among the variables. By implication, an increase in entrepreneurship significantly improves economic growth, and it reduces unemployment in both the short-run and the long-run. Besides, institutional quality proxied by the control of corruption, political stability, and government effectiveness significantly mediates the interaction between entrepreneurship and macroeconomic performance. This study concludes that improved institutional quality enhances the effect of entrepreneurship on economic growth and unemployment in Nigeria, and it recommends an improvement in Nigeria’s institutional quality because it can jeopardise or augment the effect of entrepreneurship on macroeconomic performance.

Keywords: entrepreneurship, institutional quality, unemployment, gross domestic product, Nigeria

Procedia PDF Downloads 113
10994 In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design

Authors: C. S Lee, W. C. Hsu, H. Y. Liu, C. J. Lin, S. C. Yao, Y. T. Shen, Y. C. Lin

Abstract:

In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications.

Keywords: backside metal-trench, InAlN/AlN/GaN, MOS-HFET, non-vacuum ultrasonic spray pyrolysis deposition

Procedia PDF Downloads 243
10993 Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding

Authors: Ahmed Raza Khan

Abstract:

Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications.

Keywords: strain engineering, folding, WS₂, Kelvin probe force microscopy, KPFM, surface potential, photo current, layer dependence

Procedia PDF Downloads 98
10992 Anti-Angiogenic Effects of the Macrovipera lebetina obtusa Snake Crude Venom and Obtustatin

Authors: Narine Ghazaryan, Joana Catarina Macedo, Sara Vaz, Naira Ayvazyan, Elsa Logarinho

Abstract:

Macrovipera lebetina obtusa (MLO) is a poisonous snake in Armenia. Obtustatin represents the shortest known monomeric disintegrin, isolated from the snake venom of MLO, and is known to specifically inhibit α1β1 integrin. Its oncostatic effect is due to the inhibition of angiogenesis, which likely arises from α1β1 integrin inhibition in the endothelial cells. To explore the therapeutic potential of the MLO snake venom and obtustatin, we studied activity of obtustatin and MLO venom in vitro, by testing their efficacy in human dermal microvascular endothelial cells (HMVEC-D) and in vivo, using chick embryo chorioallantoic membrane assay (CAM assay). Our in vitro results showed that obtustatin in comparison with MLO venom did not exhibit cytotoxic activity in HMVEC-D cells in comparison to MLO venom. But in vivo results have shown that 4µg /embryo (90 µM) of obtustatin inhibited angiogenesis induced by FGF2 by 17% while MLO snake venom induced 22% reduction of the angiogenic index. The concentration of obtustatin in the crude MLO venom was 0.3 nM, which is 300.000 times less than the concentration of the obtustatin itself. Given this enormous difference in concentration, it is likely that some components of the crude venom contribute to the observed anti-angiogenic effect. Hypotheses will be ascertained to justify this action: components in the MLO venom may increase obtustatin efficacy or have independent but synergic anti-angiogenic activities.

Keywords: angiogenesis, alpa1 beta 1 integrin, Macrovipera lebetina obtusa, obtustatin

Procedia PDF Downloads 174
10991 Experimental Investigations on Group Interaction Effects of Laterally Loaded Piles in Submerged Sand

Authors: Jasaswini Mishra, Ashim K. Dey

Abstract:

This paper aims to investigate the group interaction effects of laterally loaded pile groups driven into a medium dense sand layer in submerged state. Static lateral load tests were carried out on pile groups consisting of varying number of piles and at different spacings. The test setup consists of a load cell (500 kg capacity) and an LVDT (50 mm) to measure the load and pile head deflection respectively. The piles were extensively instrumented with strain gauges so as to study the variation of soil resistance within the group. The bending moments at various depths were calculated from strain gauge data and these curves were fitted using a higher order polynomial in order to get 'p-y' curves. A comparative study between a single pile and a pile under a group has also been done for a better understanding of the group effect. It is observed that average load per pile is significantly reduced relative to single pile and it decreases with increase in the number of piles in a pile group. The loss of efficiency of the piles in the group, commonly referred to as "shadowing" effect, has been expressed by the use of a 'p-multiplier'. Leading rows carries greater amount of load when compared with the trailing rows. The variations of bending moment with depth for different rows of pile within a group and different spacing have been analyzed and compared with that of a single pile. p multipliers within different rows in a pile group were evaluated from the experimental study.

Keywords: group action, laterally loaded piles, p-multiplier, strain gauge

Procedia PDF Downloads 223
10990 Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration.

Keywords: cocoa beans, colour, fermentation, shallow box

Procedia PDF Downloads 469
10989 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy

Procedia PDF Downloads 198
10988 Possible Role of Fenofibrate and Clofibrate in Attenuated Cardioprotective Effect of Ischemic Preconditioning in Hyperlipidemic Rat Hearts

Authors: Gurfateh Singh, Mu Khan, Razia Khanam, Govind Mohan

Abstract:

Objective: The present study has been designed to investigate the beneficial role of Fenofibrate & Clofibrate in attenuated the cardioprotective effect of ischemic preconditioning (IPC) in hyperlipidemic rat hearts. Materials & Methods: Experimental hyperlipidemia was produced by feeding high fat diet to rats for a period of 28 days. Isolated langendorff’s perfused normal and hyperlipidemic rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 120 min. The myocardial infarct size was assessed macroscopically using triphenyltetrazolium chloride staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase-MB release to assess the extent of cardiac injury. Moreover, the oxidative stress in heart was assessed by measuring thiobarbituric acid reactive substance, superoxide anion generation and reduced form of glutathione. Results: The ischemia-reperfusion (I/R) has been noted to induce oxidative stress by increasing TBARS, superoxide anion generation and decreasing reduced form of glutathione in normal and hyperlipidemic rat hearts. Moreover, I/R produced myocardial injury, which was assessed in terms of increase in myocardial infarct size, LDH and CK-MB release in coronary effluent and decrease in coronary flow rate in normal and hyperlipidemic rat hearts. In addition, the hyperlipidemic rat hearts showed enhanced I/R-induced myocardial injury with high degree of oxidative stress as compared with normal rat hearts subjected to I/R. Four episodes of IPC (5 min each) afforded cardioprotection against I/R-induced myocardial injury in normal rat hearts as assessed in terms of improvement in coronary flow rate and reduction in myocardial infarct size, LDH, CK-MB and oxidative stress. On the other hand, IPC mediated myocardial protection against I/R-injury was abolished in hyperlipidemic rat hearts. However, Treatment with Fenofibrate (100 mg/kg/day, i.p.), Clofibrate (300mg/kg/day, i.p.) as a agonists of PPAR-α have not affected the cardioprotective effect of IPC in normal rat hearts, but its treatment markedly restored the cardioprotective potentials of IPC in hyperlipidemic rat hearts. Conclusion: It is noted that the high degree of oxidative stress produced in hyperlipidemic rat heart during reperfusion and consequent down regulation of PPAR-α may be responsible to abolish the cardioprotective potentials of IPC.

Keywords: Hyperlipidemia, ischemia-reperfusion injury, ischemic preconditioning, PPAR-α

Procedia PDF Downloads 275
10987 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 358
10986 Effect of Fortification of Expressed Human Breast Milk with Olive Oil and Skimmed Milk in Improving Weight Gain in Very Low Birth Weight Neonates and Shortening Their Length of Hospital Stay

Authors: Sumrina Kousar

Abstract:

Objective: The aim of this study was to observe the effect of fortification of expressed human breast milk with olive oil and skimmed milk in improving weight gain in very low birth weight neonates and shortening their length of hospital stay. Study Design and place: A randomized controlled trial was carried out at the Combined Military Hospital Lahore from March 2018 to March 2019. Methods: Neonates admitted with very low birth weight and gestational age of < 34 weeks were included in the study. Sixty babies were enrolled using non-probability consecutive sampling; a random number table was used to allocate them into a fortification group and a control group. The control group received expressed milk alone, while olive oil 1 ml twice daily and skimmed milk 1 gram in every third feed were added to expressed milk in the fortification group. Data was analyzed on SPSS 20. Proportions were compared by applying the chi-square test. An independent sample t-test was applied for comparing means. A p-value of ≤ 0.05 was considered significant. Results: The study comprised of 60 neonates, with 30 in each of the groups. Weight gain was 24.83±5.63 in the fortification group and 11.72±3.95 in the control group (p =< 0.001). Mean hospital stay was 20.5716.511 in the fortification group and 27.678.89 in the control group (p =< 0.043). Conclusion: Olive oil and skimmed milk fortification of breast milk was effective for weight gain and reducing the length of hospital stay in very low birth weight neonates.

Keywords: fortification, olive oil, skimmed milk, weight gain

Procedia PDF Downloads 150
10985 Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition

Authors: Shan Faiz, Arfat Anis, Saeed M. Al-Zarani

Abstract:

High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites.

Keywords: PBI fiber, high density polyethylene, composites, melt blending

Procedia PDF Downloads 346
10984 Assessing the Walkability and Urban Design Qualities of Campus Streets

Authors: Zhehao Zhang

Abstract:

Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.

Keywords: walkability, streetscapes, pedestrian activity, walk score

Procedia PDF Downloads 133
10983 Carotenoid Bioaccessibility: Effects of Food Matrix and Excipient Foods

Authors: Birgul Hizlar, Sibel Karakaya

Abstract:

Recently, increasing attention has been given to carotenoid bioaccessibility and bioavailability in the field of nutrition research. As a consequence of their lipophilic nature and their specific localization in plant-based tissues, carotenoid bioaccessibility and bioavailability is generally quite low in raw fruits and vegetables, since carotenoids need to be released from the cellular matrix and incorporated in the lipid fraction during digestion before being absorbed. Today’s approach related to improving the bioaccessibility is to design food matrix. Recently, the newest approach, excipient food, has been introduced to improve the bioavailability of orally administered bioactive compounds. The main idea is combining food and another food (the excipient food) whose composition and/or structure is specifically designed for improving health benefits. In this study, effects of food processing, food matrix and the addition of excipient foods on the carotenoid bioaccessibility of carrots were determined. Different excipient foods (olive oil, lemon juice and whey curd) and different food matrices (grating, boiling and mashing) were used. Total carotenoid contents of the grated, boiled and mashed carrots were 57.23, 51.11 and 62.10 μg/g respectively. No significant differences among these values indicated that these treatments had no effect on the release of carotenoids from the food matrix. Contrary to, changes in the food matrix, especially mashing caused significant increase in the carotenoid bioaccessibility. Although the carotenoid bioaccessibility was 10.76% in grated carrots, this value was 18.19% in mashed carrots (p<0.05). Addition of olive oil and lemon juice as excipients into the grated carrots caused 1.23 times and 1.67 times increase in the carotenoid content and the carotenoid bioaccessibility respectively. However, addition of the excipient foods in the boiled carrot samples did not influence the release of carotenoid from the food matrix. Whereas, up to 1.9 fold increase in the carotenoid bioaccessibility was determined by the addition of the excipient foods into the boiled carrots. The bioaccessibility increased from 14.20% to 27.12% by the addition of olive oil, lemon juice and whey curd. The highest carotenoid content among mashed carrots was found in the mashed carrots incorporated with olive oil and lemon juice. This combination also caused a significant increase in the carotenoid bioaccessibility from 18.19% to 29.94% (p<0.05). When compared the results related with the effect of the treatments on the carotenoid bioaccessibility, mashed carrots containing olive oil, lemon juice and whey curd had the highest carotenoid bioaccessibility. The increase in the bioaccessibility was approximately 81% when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. In conclusion, these results demonstrated that the food matrix and addition of the excipient foods had a significant effect on the carotenoid content and the carotenoid bioaccessibility.

Keywords: carrot, carotenoids, excipient foods, food matrix

Procedia PDF Downloads 406
10982 Ecological Effect on Aphid Population in Safflower Crop

Authors: Jan M. Mari

Abstract:

Safflower is a renowned drought tolerant oil seed crop. Previously its flowers were used for cooking and herbal medicines in China and it was cultivated by small growers for his personal needs of oil. A field study was conducted at experimental field, faculty of crop protection, Sindh Agricultural University Tandojam, during winter, 2012-13, to observe ecological effect on aphid population in safflower crop. Aphid population gradually increased with the growth of safflower. It developed with maximum aphid per leaf on 3rd week of February and it decreased in March as crop matured. A non-significant interaction was found with temperature of aphid, zigzag and hoverfly, respectively and a highly significant interaction with temperature was found with 7-spotted, lacewing, 9-spotted, and Brumus, respectively. The data revealed the overall mean population of zigzag was highest, followed by 9-spotted, 7-spotted, lace wing, hover fly and Brumus, respectively. In initial time the predator and prey ratio indicated that there was not a big difference between predator and prey ratio. After January 1st, the population of aphid increased suddenly until 18th February and it established a significant difference between predator prey ratios. After that aphid population started decreasing and it affected ratio between pest and predators. It is concluded that biotic factors, 7-spotted, zigzag, 9-spotted Brumus and lacewing exhibited a strong and positive correlation with aphid population. It is suggested that aphid pest should be monitored regularly and before reaching economic threshold level augmentation of natural enemies may be managed.

Keywords: aphid, ecology, population, safflower

Procedia PDF Downloads 247
10981 The Effect of Different Patterns of Upper, Lower and Whole Body Resistance Exercise Training on Systemic and Vascular Inflammatory Factors in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Shahin Fathi Molk Kian, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6), vascular inflammatory markers as adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of different patterns of resistance exercise training on these inflammatory markers, present study aimed to examine the effect of different patterns of eight week resistance exercise training on CRP, IL-6, ICAM-1 and VCAM-1 levels in healthy untrained women. 56 healthy volunteered untrained female university students (aged: 21 ± 3 yr., Body Mass Index: 21.5 ± 3.5 kg/m²) were selected purposefully and divided into four groups. At the end of training protocol and after subject drop during the protocol, upper body exercise training (n=11), lower body (n=12) and whole body resistance exercise training group (n=11) completed the eight weeks of training period although the control group (n=7) did anything. Blood samples gathered pre and post-experimental period and CRP, IL-6, ICAM-1 and VCAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one-way analysis of variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP, ICAM-1 and VCAM-1 showed no significant changes due to the exercise training, but there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper, lower and whole body exercise training by involving the different amounts of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP, ICAM-1 and VCAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: resistance training, C-reactive protein, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1

Procedia PDF Downloads 119
10980 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 243
10979 Design and Developing the Infrared Sensor for Detection and Measuring Mass Flow Rate in Seed Drills

Authors: Bahram Besharti, Hossein Navid, Hadi Karimi, Hossein Behfar, Iraj Eskandari

Abstract:

Multiple or miss sowing by seed drills is a common problem on the farm. This problem causes overuse of seeds, wasting energy, rising crop treatment cost and reducing crop yield in harvesting. To be informed of mentioned faults and monitoring the performance of seed drills during sowing, developing a seed sensor for detecting seed mass flow rate and monitoring in a delivery tube is essential. In this research, an infrared seed sensor was developed to estimate seed mass flow rate in seed drills. The developed sensor comprised of a pair of spaced apart circuits one acting as an IR transmitter and the other acting as an IR receiver. Optical coverage in the sensing section was obtained by setting IR LEDs and photo-diodes directly on opposite sides. Passing seeds made interruption in radiation beams to the photo-diode which caused output voltages to change. The voltage difference of sensing units summed by a microcontroller and were converted to an analog value by DAC chip. The sensor was tested by using a roller seed metering device with three types of seeds consist of chickpea, wheat, and alfalfa (representing large, medium and fine seed, respectively). The results revealed a good fitting between voltage received from seed sensor and mass flow of seeds in the delivery tube. A linear trend line was set for three seeds collected data as a model of the mass flow of seeds. A final mass flow model was developed for various size seeds based on receiving voltages from the seed sensor, thousand seed weight and equivalent diameter of seeds. The developed infrared seed sensor, besides monitoring mass flow of seeds in field operations, can be used for the assessment of mechanical planter seed metering unit performance in the laboratory and provide an easy calibrating method for seed drills before planting in the field.

Keywords: seed flow, infrared, seed sensor, seed drills

Procedia PDF Downloads 343
10978 Preparation and Characterization of Mixed Cu-Ag-Pd Oxide Supported Catalysts for Complete Catalytic Oxidation of Methane

Authors: Ts. Lazarova, V. Tumbalev, S. Atanacova-Vladimirova, G. Ivanov, A. Naydenov, D. Kovacheva

Abstract:

Methane is a major Greenhouse Gas (GHG) that accounts for 14% of the world’s total amount of GHG emissions, originating mainly from agriculture, Coal mines, land fields, wastewater and oil and gas facilities. Nowadays the problem caused by the methane emissions has been a subject of an increased concern. One of the methods for neutralization of the methane emissions is it's complete catalytic oxidation. The efforts of the researchers are focused on the development of new types of catalysts and optimizing the existing catalytic systems in order to prevent the sintering of the palladium, providing at the same time a sufficient activity at temperatures below 500oC. The aim of the present work is to prepare mixed Cu-Ag-Pd oxide catalysts supported on alumina and to test them for methane complete catalytic oxidation. Cu-Ag-Pd/Al2O3 were prepared on a γ-Al2O3 (BET surface area = 220 m2/g) by the incipient wetness method using the corresponding metal nitrates (Cu:Ag = 90:10, Cu:Pd =97:3, Cu:Ag:Pd= 87:10:3) as precursors. A second set of samples were prepared with addition of urea to the metal nitrate solutions with the above mentioned ratios assuming increased dispersivity of the catalysts. The catalyst samples were dried at 100°C for 3 hours and calcined at 550°C for 30 minutes. Catalysts samples were characterized using X-ray diffraction (XRD), low temperature adsorption of nitrogen (BET) and scanning electron microscopy (SEM). The catalytic activity tests were carried out in a continuous flow type of reactor at atmospheric pressure. The effect of catalyst aging at 500 oC for 120 h on the methane combustion activity was also investigated. The results clearly indicate the synergetic effect of Ag and Pd on the catalytic activity.

Keywords: catalysts, XRD, BET, SEM, catalytic oxidation

Procedia PDF Downloads 367
10977 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field

Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi

Abstract:

Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.

Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing

Procedia PDF Downloads 179
10976 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications

Authors: Badr M. Thamer

Abstract:

The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.

Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment

Procedia PDF Downloads 129
10975 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 287
10974 Impact of Behavioral Biases on Indian Investors: Case Analysis of a Mutual Fund Investment Company

Authors: Priyal Motwani, Garvit Goel

Abstract:

In this study, we have studied and analysed the transaction data of investors of a mutual fund investment company based in India. Based on the data available, we have identified the top four biases that affect the investors of the emerging market economies through regression analysis and three uniquely defined ratios. We found that the four most prominent biases that affected the investment making decisions in India are– Chauffer Knowledge, investors tend to make ambitious decisions about sectors they know little about; Bandwagon effect – the response of the market indices to macroeconomic events are more profound and seem to last longer compared to western markets; base-rate neglect – judgement about stocks are too much based on the most recent development ignoring the long-term fundamentals of the stock; availability bias – lack of proper communication channels of market information lead people to be too reliant on limited information they already have. After segregating the investors into six groups, the results have further been studied to identify a correlation among the demographics, gender and unique cultural identity of the derived groups and the corresponding prevalent biases. On the basis of the results obtained from the derived groups, our study recommends six methods, specific to each group, to educate the investors about the prevalent biases and their role in investment decision making.

Keywords: Bandwagon effect, behavioural biases, Chauffeur knowledge, demographics, investor literacy, mutual funds

Procedia PDF Downloads 217
10973 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 34
10972 Determination of the Effect of Kaolin on the Antimicrobial Activity of Metronidazole-Kaolin Interaction

Authors: Omaimah Algohary

Abstract:

Kaolin is one of the principle intestinal adsorbents, has traditionally been used internally in the treatment of various enteric disorders, colitis, enteritis, dysentery, and diarrhea associated with food and alkaloidal poisoning and in traveler’s diarrhea. It binds to and traps bacteria and its toxins and gases in the gut. It also binds to water in the gut, which helps to make the stools firmer, hence giving symptomatic relief. Metronidazole is a synthetic antibacterial agent that is used primarily in the treatment of various anaerobic infections such as intra-abdominal infections, antiprotozoal, and as amebicidal. The need for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. Metronidazol used for treatment of anaerobic bacteria and kaolin , when administered simultaneously, Metronidazole–Kaolin interactions have been reported by FDA but not studied. This project is the first to study the effect of Metronidazole–Kaolin interactions on the antimicrobial activity of metronidazole. Agar diffusion method performed to test the antimicrobial activity of metronidazole–kaolin antidiarrheal combination from aqueous solutions at an in-vivo simulated pHs conditions that obtained at 37+0.5 °C on Helicobacter pylori as anaerobic bacteria and E.coli as aerobic bacteria and used as a control for the technique. The antimicrobial activity of metronidazole combination as 1:1 and 1:2 with kaolin was abolished in acidic media as no zones of inhibition shown compared to only metronidazole that used as a control. In alkaline media metronidazole combination as 1:1 and 1:2 with kaolin showed diminutive activity compared to the control. These results proved that the kaolin adsorb metronidazole and abolish its antimicrobial activity and such combination should be avoided.

Keywords: kaolin, metronidazole, interaction, Helicobacter pylori. E. coli, antimicrobial activity

Procedia PDF Downloads 371
10971 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear

Authors: Barenten Suciu, Yuya Nakamoto

Abstract:

Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.

Keywords: circular arc helical gear, contact problem, optimal center distance, piezoelectric sheet, power generation

Procedia PDF Downloads 149