Search results for: hybrid learning
3692 An Analysis of L1 Effects on the Learning of EFL: A Case Study of Undergraduate EFL Learners at Universities in Pakistan
Authors: Nadir Ali Mugheri, Shaukat Ali Lohar
Abstract:
In a multilingual society like Pakistan, code switching is commonly observed in different contexts. Mostly people use L1 (Native Languages) and L2 for common communications and L3 (i.e. English, Urdu, Sindhi) in formal contexts and for academic writings. Such a frequent code switching does affect EFL learners' acquisition of grammar and lexis of the target language which in the long run result in different types of errors in their writings. The current study is to investigate and identify common elements of L1 and L2 (spoken by students of the Universities in Pakistan) which create hindrances for EFL learners. Case study method was used for this research. Formal writings of 400 EFL learners (as participants from various Universities of the country) were observed. Among 400 participants, 200 were female and 200 were male EFL learners having different academic backgrounds. Errors found were categorized into different types according to grammatical items, the difference in meanings, structure of sentences and identifiers of tenses of L1 or L2 in comparison with those of the target language. The findings showed that EFL learners in Pakistani varsities have serious problems in their writings and they committed serious errors related to the grammar and meanings of the target language. After analysis of the committed errors, the results were found in the affirmation of the hypothesis that L1 or L2 does affect EFL learners. The research suggests in the end to adopt natural ways in pedagogy like task-based learning or communicative methods using contextualized material so as to avoid impediments of L1 or L2 in acquisition the target language.Keywords: multilingualism, L2 acquisition, code switching, language acquisition, communicative language teaching
Procedia PDF Downloads 2903691 Simulation of Growth and Yield of Rice Under Irrigation and Nitrogen Management Using ORYZA2000
Authors: Mojtaba Esmaeilzad Limoudehi
Abstract:
To evaluate the model ORYZA2000, under the management of irrigation and nitrogen fertilization experiment, a split plot with a randomized complete block design with three replications on hybrid cultivars (spring) in the 1388-1387 crop year was conducted at the Rice Research Institute. Permanent flood irrigation as the main plot in the fourth level, around 5 days, from 11 days to 8 days away, and the four levels of nitrogen fertilizer as the subplots 0, 90, 120, and 150 kg N Ha were considered. Simulated and measured values of leaf area index, grain yield, and biological parameters using the regression coefficient, t-test, the root mean square error (RMSE), and normalized root mean square error (RMSEn) were performed. Results, the normalized root mean square error of 10% in grain yield, the biological yield of 9%, and 23% of maximum LAI was determined. The simulation results show that grain yield and biological ORYZA2000 model accuracy are good but do not simulate maximum LAI well. The results show that the model can support ORYZA2000 test results and can be used under conditions of nitrogen fertilizer and irrigation management.Keywords: evaluation, rice, nitrogen fertilizer, model ORYZA2000
Procedia PDF Downloads 703690 Early Education Assessment Methods
Authors: Anantdeep Kaur, Sharanjeet Singh
Abstract:
Early childhood education and assessment of children is a very essential tool that helps them in their growth and development. Techniques should be developed, and tools should be created in this field as it is a very important learning phase of life. Some information and sources are included for student assessment to provide a record of growth in all developmental areas cognitive, physical, Language, social-emotional, and approaches to learning. As an early childhood educator, it is very important to identify children who need special support and counseling to improve them because they are not mentally mature to discuss with the teacher their problems and needs. It is the duty and responsibility of the educator to assess children from their body language, behavior, and their routine actions about their skills that can be improved and which can take them forward in their future life. And also, children should be assessed with their weaker points because this is the right time to correct them, and they be improved with certain methods and tools by working on them constantly. Observing children regularly with all their facets of development, including intellectual, linguistic, social-emotional, and physical development. Every day, a physical education class should be regulated to check their physical growth activities, which can help to assess their physical activeness and motor abilities. When they are outside on the playgrounds, it is very important to instill environmental understanding among them so that they should know that they are very part of this nature, and it will help them to be one with the universe rather than feeling themselves individually. This technique assists them in living their childhood full of energy all the time. All types of assessments have unique purposes. It is important first to determine what should be measured, then find the program that best assesses those.Keywords: special needs, motor ability, environmental understanding, physical development
Procedia PDF Downloads 943689 Combating Contraflow to Creativity Amongst Preservice Teachers in Teacher Arts Education
Authors: Michael Flannery, Annie ó Breacháin
Abstract:
Teaching the creative arts in preservice teacher education can be challenging. Some students find artistic self-expression and its related creative processes overwhelming. Low creative self-efficacy levels and creative habits of mind can impede their levels of motivation, engagement and persistence. For some, creative arts engagement can induce a state of anxiety and distress as opposed to flow. Flow theory posits that learners are happiest when they are learning in a state of flow. During the flow state, students feel, think and perform their best. They become so involved in the learning experience that nothing else seems to matter. The creative flow state is a crucial conduit of artistic processes to enable learners to explore and produce their best work. Despite the research conducted on flow state across several contexts, the phenomenon of personal flow state remains quite elusive. While some research has examined flow in relation to characteristics, conditions and personality traits, no research has investigated individuals' personal experiences of flow in a visual and tangible manner nor explored a relationship between flow state and teachers’ artistic development. This explorative case study explores preservice teachers’ impressions of flow using an arts-based approach. It identifies, categorizes and discusses patterns of commonality and difference. Grounded by theory concerning flow, self-efficacy and creative habits, this study ponders how emerging findings regarding flow impressions might aid teacher arts educators in helping preservice teachers who struggle with creative self-expression.Keywords: creative arts, flow theory, presence, self-efficacy, teacher education
Procedia PDF Downloads 283688 An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors
Authors: Hadjoui Abdelhamid, Saimi Ahmed
Abstract:
The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc.Keywords: Campbell diagram, critical speeds, nonlinear rotor, version h-p of FEM
Procedia PDF Downloads 2333687 Design of an Energy Efficient Electric Auto Rickshaw
Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar
Abstract:
Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment
Procedia PDF Downloads 2873686 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution
Authors: Pitigalage Chamath Chandira Peiris
Abstract:
A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.Keywords: single image super resolution, computer vision, vision transformers, image restoration
Procedia PDF Downloads 1053685 Culturally Relevant Pedagogy: A Cross-Cultural Comparison
Authors: Medha Talpade, Salil Talpade
Abstract:
The intent of this quantitative project was to compare the values and perceptions of students from a predominantly white college (PWI) to those from a historically black college (HBCU) about culturally relevant teaching and learning practices in the academic realm. The reason for interrelating student culture with teaching practices is to enable a pedagogical response to the low retention rates of African American students and first generation Caucasian students in high schools, colleges, and their low rates of social mobility and educational achievement. Culturally relevant pedagogy, according to related research, is deemed rewarding to students, teachers, the local and national community. Critical race theory (CRT) is the main framework used in this project to explain the ubiquity of a culturally relevant pedagogy. The purpose of this quantitative study was to test the critical race theory that relates the presence of the factors associated with culturally relevant teaching strategies with perceived relevance. The culturally relevant teaching strategies were identified based on the recommendations and findings of past research. Participants in this study included approximately 145 students from a HBCU and 55 students from the PWI. A survey consisting of 37 items related to culturally relevant pedagogy was administered. The themes used to construct the items were: Use of culturally-specific examples in class whenever possible; use of culturally-specific presentational models, use of relational reinforcers, and active engagement. All the items had a likert-type response scale. Participants reported their degree of agreement (5-point scale ranging from strongly disagree to strongly agree) and importance (3-point scale ranging from not at all important to very important) with each survey item. A new variable, Relevance was formed based on the multiplicative function of importance and presence of a teaching and learning strategy. A set of six demographic questions were included in the survey. A consent form based on NIH and APA ethical standards was distributed prior to survey administration to the volunteers. Results of a Factor Analyses on the data from the PWI and the HBCU, and a ANOVA indicated significant differences on ‘Relevance’ related to specific themes. Results of this study are expected to inform educational practices and improve teaching and learning outcomes.Keywords: culturally relevant pedagogy, college students, cross-cultural, applied psychology
Procedia PDF Downloads 4323684 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System
Authors: Larry Audet
Abstract:
Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.Keywords: creativity, leadership, KEYS survey, teaching, work climate
Procedia PDF Downloads 1663683 Application of a Hybrid QFD-FEA Methodology for Nigerian Garment Designs
Authors: Adepeju A. Opaleye, Adekunle Kolawole, Muyiwa A. Opaleye
Abstract:
Consumers’ perceived quality of imported product has been an impediment to business in the Nigeria garment industry. To improve patronage of made- in-Nigeria designs, the first step is to understand what the consumer expects, then proffer ways to meet this expectation through product redesign or improvement of the garment production process. The purpose of this study is to investigate drivers of consumers’ value for typical Nigerian garment design (NGD). An integrated quality function deployment (QFD) and functional, expressive and aesthetic (FEA) Consumer Needs methodology helps to minimize incorrect understanding of potential consumer’s requirements in mass customized garments. Six themes emerged as drivers of consumer’s satisfaction: (1) Style variety (2) Dimensions (3) Finishing (4) Fabric quality (5) Garment Durability and (6) Aesthetics. Existing designs found to lead foreign designs in terms of its acceptance for informal events, style variety and fit. The latter may be linked to its mode of acquisition. A conceptual model of NGD acceptance in the context of consumer’s inherent characteristics, social and the business environment is proposed.Keywords: Perceived quality, Garment design, Quality function deployment, FEA Model , Mass customisation
Procedia PDF Downloads 1373682 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism
Authors: Ferah Tesfaye Admasu
Abstract:
Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning
Procedia PDF Downloads 193681 L1 Poetry and Moral Tales as a Factor Affecting L2 Acquisition in EFL Settings
Authors: Arif Ahmed Mohammed Al-Ahdal
Abstract:
Poetry, tales, and fables have always been a part of the L1 repertoire and one that takes the learners to another amazing and fascinating world of imagination. The storytelling class and the genre of poems are activities greatly enjoyed by all age groups. The very significant idea behind their inclusion in the language curriculum is to sensitize young minds to a wide range of human emotions that are believed to greatly contribute to building their social resilience, emotional stability, empathy towards fellow creatures, and literacy. Quite certainly, the learning objective at this stage is not language acquisition (though it happens as an automatic process) but getting the young learners to be acquainted with an entire spectrum of what may be called the ‘noble’ abilities of the human race. They enrich their very existence, inspiring them to unearth ‘selves’ that help them as adults and enable them to co-exist fruitfully and symbiotically with their fellow human beings. By extension, ‘higher’ training in these literature genres shows the universality of human emotions, sufferings, aspirations, and hopes. The current study is anchored on the Reader-Response-Theory in literature learning, which suggests that the reader reconstructs work and re-enacts the author's creative role. Reiteratingly, literary works provide clues or verbal symbols in a linguistic system, widely accepted by everyone who shares the language, but everyone reads their own life experiences and situations into them. The significance of words depends on the reader, even if they have a typical relationship. In every reading, there is an interaction between the reader and the text. The process of reading is an experience in which the reader tries to comprehend the literary work, which surpasses its full potential since it provides emotional and intellectual reactions that are not anticipated from the document but cannot be affirmed just by the reader as a part of the text. The idea is that the text forms the basis of a unifying experience. A reinterpretation of the literary text may transform it into a guiding principle to respond to actual experiences and personal memories. The impulses delivered to the reader vary according to poetry or texts; nevertheless, the readers differ considerably even with the same material. Previous studies confirm that poetry is a useful tool for learning a language. This present paper works on these hypotheses and proposes to study the impetus given to L2 learning as a factor of exposure to poetry and meaningful stories in L1. The driving force behind the choice of this topic is the first-hand experience that the researcher had while teaching a literary text to a group of BA students who, as a reaction to the text, initially burst into tears and ultimately turned the class into an interactive session. The study also intends to compare the performance of male and female students post intervention using pre and post-tests, apart from undertaking a detailed inquiry via interviews with college learners of English to understand how L1 literature plays a great role in the acquisition of L2.Keywords: SLA, literary text, poetry, tales, affective factors
Procedia PDF Downloads 773680 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 573679 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method
Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh
Abstract:
Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel
Procedia PDF Downloads 4563678 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim
Abstract:
This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: aftershock, composite material, GFRP, infill panel
Procedia PDF Downloads 3343677 Developing Fault Tolerance Metrics of Web and Mobile Applications
Authors: Ahmad Mohsin, Irfan Raza Naqvi, Syda Fatima Usamn
Abstract:
Applications with higher fault tolerance index are considered more reliable and trustworthy to drive quality. In recent years application development has been shifted from traditional desktop and web to native and hybrid application(s) for the web and mobile platforms. With the emergence of Internet of things IOTs, cloud and big data trends, the need for measuring Fault Tolerance for these complex nature applications has increased to evaluate their performance. There is a phenomenal gap between fault tolerance metrics development and measurement. Classic quality metric models focused on metrics for traditional systems ignoring the essence of today’s applications software, hardware & deployment characteristics. In this paper, we have proposed simple metrics to measure fault tolerance considering general requirements for Web and Mobile Applications. We have aligned factors – subfactors, using GQM for metrics development considering the nature of mobile we apps. Systematic Mathematical formulation is done to measure metrics quantitatively. Three web mobile applications are selected to measure Fault Tolerance factors using formulated metrics. Applications are then analysed on the basis of results from observations in a controlled environment on different mobile devices. Quantitative results are presented depicting Fault tolerance in respective applications.Keywords: web and mobile applications, reliability, fault tolerance metric, quality metrics, GQM based metrics
Procedia PDF Downloads 3443676 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties
Authors: Norah Alosayl
Abstract:
English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations
Procedia PDF Downloads 1913675 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 813674 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose
Authors: Kumar Shashvat, Amol P. Bhondekar
Abstract:
In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.Keywords: odor classification, generative models, naive bayes, linear discriminant analysis
Procedia PDF Downloads 3873673 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1183672 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem
Authors: Ernesto Linan, Linda Cruz, Lucero Becerra
Abstract:
In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics
Procedia PDF Downloads 2113671 Human Performance Evaluating of Advanced Cardiac Life Support Procedure Using Fault Tree and Bayesian Network
Authors: Shokoufeh Abrisham, Seyed Mahmoud Hossieni, Elham Pishbin
Abstract:
In this paper, a hybrid method based on the fault tree analysis (FTA) and Bayesian networks (BNs) are employed to evaluate the team performance quality of advanced cardiac life support (ACLS) procedures in emergency department. According to American Heart Association (AHA) guidelines, a category relying on staff action leading to clinical incidents and also some discussions with emergency medicine experts, a fault tree model for ACLS procedure is obtained based on the human performance. The obtained FTA model is converted into BNs, and some different scenarios are defined to demonstrate the efficiency and flexibility of the presented model of BNs. Also, a sensitivity analysis is conducted to indicate the effects of team leader presence and uncertainty knowledge of experts on the quality of ACLS. The proposed model based on BNs shows that how the results of risk analysis can be closed to reality comparing to the obtained results based on only FTA in medical procedures.Keywords: advanced cardiac life support, fault tree analysis, Bayesian belief networks, numan performance, healthcare systems
Procedia PDF Downloads 1473670 The Reasons and the Practical Benefits Behind the Motivation of Businesses to Participate in the Dual Education System (DLS)
Authors: Ainur Bulasheva
Abstract:
During the last decade, the dual learning system (DLS) has been actively introduced in various industries in Kazakhstan, including both vocational, post-secondary, and higher education levels. It is a relatively new practice-oriented approach to training qualified personnel in Kazakhstan, officially introduced in 2012. Dual learning was integrated from the German vocational education and training system, combining practical training with part-time work in production and training in an educational institution. The policy of DLS has increasingly focused on decreasing youth unemployment and the shortage of mid-level professionals by providing incentives for employers to involve in this system. By participating directly in the educational process, the enterprise strives to train its future personnel to meet fast-changing market demands. This study examines the effectiveness of DLS from the perspective of employers to understand the motivations of businesses to participate (invest) in this program. The human capital theory of Backer, which predicts that employers will invest in training their workers (in our case, dual students) when they expect that the return on investment will be greater than the cost - acts as a starting point. Further extensionists of this theory will be considered to understand investing intentions of businesses. By comparing perceptions of DLS employers and non-dual practices, this study determines the efficiency of promoted training approach for enterprises in the Kazakhstan agri-food industry.Keywords: vocational and technical education, dualeducation, human capital theory, argi-food industry
Procedia PDF Downloads 693669 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops
Authors: Simon Komesker, Achim Wagner, Martin Ruskowski
Abstract:
In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.Keywords: holonic manufacturing system, modular production system, planning, and control, system structure
Procedia PDF Downloads 1693668 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.Keywords: daylight, window, orientation, energy consumption, design builder
Procedia PDF Downloads 2333667 Promotion of the Arabic language in India: MES Mampad College - A Torchbearer
Authors: Junaid C, Sabique MK
Abstract:
Introduction: MES Mamapd College is an autonomous college established in 1964 affiliated with the University of Calicut run by the Muslim Educational Society Kerala. The department of Arabic of the college is having a pivotal role in promoting Arabic language learning, teaching, research, and other allied academic activities. State of Problem: Department of Arabic of the college introduced before the academic committee the culture of international seminars. The department connected the academic community with foreign scholars and introduced industry-academia collaboration programs which are beneficial to the job seekers. These practices and innovations should be documented. Objectives: Create awareness of innovative practices implemented for the promotion of the Arabic language. Infuse confidence in learners in learning of Arabic language. Showcase the distinctive academic programs initiated by the department Methodology: Data will be collected from archives, souvenirs, and reports. Survey methods and interviews with authorities and beneficiaries will be collected for the data analysis. Major results: MES Mampad College introduced before its stakeholders different unique academic practices related to the Arabic language and literature. When the unprecedented pandemic situation pulled back all of the academic community, the department come forward with numerous academic initiatives utilizing the virtual space. Both arenas will be documented. Conclusion: This study will help to make awareness on the promotion of the Arabic language studies and related practices initiated by the department of Arabic MES Mampad College. These practices and innovations can be modeled and replicated.Keywords: teaching Arabic language, MES mampad college, Arabic webinars, pandemic impacts in literature
Procedia PDF Downloads 863666 Designing Sustainable Building Based on Iranian's Windmills
Authors: Negar Sartipzadeh
Abstract:
Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.Keywords: renewable energy, sustainable building, windmill, Iranian architecture
Procedia PDF Downloads 4223665 The Impact of Artificial Intelligence on Digital Construction
Authors: Omil Nady Mahrous Maximous
Abstract:
The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 583664 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students
Authors: Nahid Nariman
Abstract:
The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.Keywords: problem-based learning, science education, STEM, underrepresented students
Procedia PDF Downloads 1243663 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 49