Search results for: ground thermal conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6072

Search results for: ground thermal conductivity

1032 A Refrigerated Condition for the Storage of Glucose Test Strips at Health Promoting Hospitals: An Implication for Hospitals with Limited Air Conditioners

Authors: Wanutchaya Duanginta, Napaporn Apiratmateekul, Tippawan Sangkaew, Sunaree Wekinhirun, Kunchit Kongros, Wanvisa Treebuphachatsakul

Abstract:

Thailand has a tropical climate with an average outdoor ambient air temperature of over 30°C, which can exceed manufacturer recommendations for the storage of glucose test strips. This study monitored temperature and humidity at actual sites of five sub-district health promoting hospitals (HPH) in Phitsanulok Province for the storage of glucose test strips in refrigerated conditions. Five calibrated data loggers were placed at the actual sites for glucose test strip storage at five HPHs for 8 weeks between April and June. For the stress test, two lot numbers of glucose test strips, each with two glucose meters, were kept in a plastic box with desiccants and placed in a refrigerator with the temperature calibrated to 4°C and at room temperature (RT). Temperature and humidity in the refrigerator and at RT were measured every hour for 30 days. The mean temperature for storing test strips at the five HPHs ranged from 29°C to 33°C, and three of the five HPHs (60%) had a mean temperature above 30°C. The refrigerator temperatures were 3.8 ± 2.0°C (2.0°C to 6.5°C), and relative humidity was 51 ± 2% (42 to 54%). The maximum of blood glucose testing by glucose meters when the test strips were stored in a refrigerator were not significantly different (p > 0.05) from unstressed test strips for both glucose meters using amperometry-GDH-PQQ and amperometry-GDH-FAD principles. Opening the test strip vial daily resulted in higher variation than when refrigerated after a single-use. However, the variations were still within an acceptable range. This study concludes that glucose tested strips can be stored in plastic boxes in a refrigerator if it is well-controlled for temperature and humidity. Storage of glucose-tested strips in the refrigerator during hot and humid weather may be useful for HPHs with limited air conditioners.

Keywords: environmental stressed test, thermal stressed test, quality control, point-of-care testing

Procedia PDF Downloads 185
1031 A Review: The Impact of Core Quality the Empirical Review of Critical Factors on the Causes of Delay in Road Constructions Projects in the GCC Countries

Authors: Sulaiman Al-Hinai, Setyawan Widyarto

Abstract:

The aim of this study is to identify the critically dominating factors on the delays of road constructions in the GCC countries and their effects on project delivery in Arab countries. Towards the achieved of the objectives the study used the empirical literature from the all relevant online sources and database as many as possible. The findings of this study have summarized and short listed of the success factors in the two categories such as internal and external factors have caused to be influenced to delay of road constructions in the Arab regions. However, in the category of internal factors, there are 63 factors short listed from seven group of factors which has revealed to effects on the delay of road constructions especially, the consultant related factors, the contractor related factors, designed related factors, client related factors, labor related factors, material related issues, equipment related issues respectively. Moreover, for external related factors are also considered to summarized especially natural disaster (flood, hurricanes and cyclone etc.), conflict, war, global financial crisis, compensation delay to affected property owner, price fluctuated, unexpected ground conditions (soil and high-water level), changing of government regulations and laws, delays in obtaining permission from municipality, loss of time by traffic control and restrictions at job site, problem with inhabitant of community, delays in providing service from utilities (water and electricity’s) and accident during constructions accordingly. The present study also concluded the effects of above factors which has delay road constructions through increasing of cost and overrun it, taken overtime, creating of disputes, going for lawsuits, finally happening of abandon of projects. Thus, the present study has given the following recommendations to overcome of above problems by increasing of detailed site investigations, ensure careful monitoring and regular meetings, effective site management, collaborative working and effective coordination’s, proper and comprehensive planning and scheduling and ensure full and intensive commitment from all parties accordingly.

Keywords: Arab GCC countries, critical success factors, road constructions delay, project management

Procedia PDF Downloads 121
1030 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 169
1029 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 381
1028 Development of Self-Reliant Satellite-Level Propulsion System by Using Hydrogen Peroxide Propellant

Authors: H. J. Liu, Y. A. Chan, C. K. Pai, K. C. Tseng, Y. H. Chen, Y. L. Chan, T. C. Kuo

Abstract:

To satisfy the mission requirement of the FORMOSAT-7 project, NSPO has initialized a self-reliant development on satellite propulsion technology. A trade-off study on different types of on-board propulsion system has been done. A green propellant, high-concentration hydrogen peroxide (H2O2 hereafter), is chosen in this research because it is ITAR-free, nontoxic and easy to produce. As the components designed for either cold gas or hydrazine propulsion system are not suitable for H2O2 propulsion system, the primary objective of the research is to develop the components compatible with H2O2. By cooperating with domestic research institutes and manufacturing vendors, several prototype components, including a diaphragm-type tank, pressure transducer, ball latching valve, and one-Newton thruster with catalyst bed, were manufactured, and the functional tests were performed successfully according to the mission requirements. The requisite environmental tests, including hot firing test, thermal vaccum test, vibration test and compatibility test, are prepared and will be to completed in the near future. To demonstrate the subsystem function, an Air-Bearing Thrust Stand (ABTS) and a real-time Data Acquisition & Control System (DACS) were implemented to assess the performance of the proposed H2O2 propulsion system. By measuring the distance that the thrust stand has traveled in a given time, the thrust force can be derived from the kinematics equation. To validate the feasibility of the approach, it is scheduled to assess the performance of a cold gas (N2) propulsion system prior to the H2O2 propulsion system.

Keywords: FORMOSAT-7, green propellant, Hydrogen peroxide, thruster

Procedia PDF Downloads 422
1027 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation

Authors: A. A. Abid

Abstract:

The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before

Keywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations

Procedia PDF Downloads 109
1026 Geo-Spatial Distribution of Radio Refractivity and the Influence of Fade Depth on Microwave Propagation Signals over Nigeria

Authors: Olalekan Lawrence Ojo

Abstract:

Designing microwave terrestrial propagation networks requires a thorough evaluation of the severity of multipath fading, especially at frequencies below 10 GHz. In nations like Nigeria, without a large enough databases to support the existing empirical models, the mistakes in the prediction technique intended for the evaluation may be severe. The need for higher bandwidth for various satellite applications makes the investigation of the effects of radio refractivity, fading due to multipath, and Geoclimatic factors on satellite propagation links more important. One of the key elements to take into account for the best functioning of microwave frequencies is the clear air effects. This work has taken into account the geographical distribution of radio refractivity and fades depth over a number of stations in Nigeria. Data from five locations in Nigeria—Akure, Enugu, Jos, Minna, and Sokoto—based on five-year (2017–2021) measurement methods of atmospheric pressure, relative, and humidity temperature—at two levels (ground surface and 100 m heights)—are studied to deduced their effects on signals propagated through a µwave communication links. The assessments included considerations for µwave communication systems as well as the impacts of the dry and wet components of radio refractivity, the effects of the fade depth at various frequencies, and a 20 km link distance. The results demonstrate that the percentage occurrence of the dry terms dominated the radio refractivity constituent at the surface level, contributing a minimum of about 78% and a maximum of about 92%, while at heights of 100 meters, the percentage occurrence of the dry terms dominated the radio refractivity constituent, contributing a minimum of about 79% and a maximum of about 92%. The spatial distribution reveals that, regardless of height, the country's tropical rainforest (TRF) and freshwater swampy mangrove (FWSM) regions reported the greatest values of radio refractivity. The statistical estimate shows that fading values can differ by as much as 1.5 dB, especially near the TRF and FWSM coastlines, even during clear air conditions. The current findings will be helpful for budgeting Earth-space microwave links, particularly for the rollout of Nigeria's 5G and 6G projected microcellular networks.

Keywords: fade depth, geoclimatic factor, refractivity, refractivity gradient

Procedia PDF Downloads 69
1025 Mesozooplankton in the Straits of Florida: Patterns in Biomass and Distribution

Authors: Sharein El-Tourky, Sharon Smith, Gary Hitchcock

Abstract:

Effective fisheries management is necessarily dependent on the accuracy of fisheries models, which can be limited if they omit critical elements. One critical element in the formulation of these models is the trophic interactions at the larval stage of fish development. At this stage, fish mortality rates are at their peak and survival is often determined by resource limitation. Thus it is crucial to identify and quantify essential prey resources and determine how they vary in abundance and availability. The main resources larval fish consume are mesozooplankton. In the Straits of Florida, little is known about temporal and spatial variability of the mesozooplankton community despite its importance as a spawning ground for fish such as the Blue Marlin. To investigate mesozooplankton distribution patterns in the Straits of Florida, a transect of 16 stations from Miami to the Bahamas was sampled once a month in 2003 and 2004 at four depths. We found marked temporal and spatial variability in mesozooplankton biomass, diversity, and depth distribution. Mesozooplankton biomass peaked on the western boundary of the SOF and decreased gradually across the straits to a minimum at eastern stations. Midcurrent stations appeared to be a region of enhanced year-round variability, but limited seasonality. Examination of dominant zooplankton groups revealed groups could be parsed into 6 clusters based on abundance. Of these zooplankton groups, copepods were the most abundant zooplankton group, with the 20 most abundant species making up 86% of the copepod community. Copepod diversity was lowest at midcurrent stations and highest in the Eastern SOF. Interestingly, one copepods species, previously identified to compose up to 90% of larval blue marlin and sailfish diets in the SOF, had a mean abundance of less than 7%. However, the unique spatial and vertical distribution patterns of this copepod coincide with peak larval fish spawning periods and larval distribution, suggesting an important relationship requiring further investigation.

Keywords: mesozooplankton biodiversity, larval fish diet, food web, Straits of Florida, vertical distribution, spatiotemporal variability, cross-current comparisons, Gulf Stream

Procedia PDF Downloads 549
1024 Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Amit Verma, B. C. Meikap

Abstract:

Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life.

Keywords: carbon dioxide, scrubbing, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 216
1023 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 149
1022 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network

Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang

Abstract:

The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.

Keywords: critical message, DTN, navigation satellite, on-board, real-time

Procedia PDF Downloads 338
1021 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 277
1020 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 327
1019 Analysis of Force Convection in Bandung Triga Reactor Core Plate Types Fueled Using Coolod-N2

Authors: K. A. Sudjatmi, Endiah Puji Hastuti, Surip Widodo, Reinaldy Nazar

Abstract:

Any pretensions to stop the production of TRIGA fuel elements by TRIGA reactor fuel elements manufacturer should be anticipated by the operating agency of TRIGA reactor to replace the cylinder type fuel element with plate type fuel element, that available on the market. This away was performed the calculation on U3Si2Al fuel with uranium enrichment of 19.75% and a load level of 2.96 gU/cm3. Maximum power that can be operated on free convection cooling mode at the BANDUNG TRIGA reactor fuel plate was 600 kW. This study has been conducted thermalhydraulic characteristic calculation model of the reactor core power 2MW. BANDUNG TRIGA reactor core fueled plate type is composed of 16 fuel elements, 4 control elements and one irradiation facility which is located right in the middle of the core. The reactor core is cooled using a pump which is already available with flow rate 900 gpm. Analysis on forced convection cooling mode with flow from the top down from 10%, 20%, 30% and so on up to a 100% rate of coolant flow. performed using the COOLOD-N2 code. The calculations result showed that the 2 MW power with inlet coolant temperature at 37 °C and cooling rate percentage of 50%, then the coolant temperature, maximum cladding and meat respectively 64.96 oC, 124.81 oC, and 125.08 oC, DNBR (departure from nucleate boiling ratio)=1.23 and OFIR (onset of flow instability ratio)=1:00. The results are expected to be used as a reference for determining the power and cooling rate level of the BANDUNG TRIGA reactor core plate types fueled.

Keywords: TRIGA, COOLOD-N2, plate type fuel element, force convection, thermal hydraulic characteristic

Procedia PDF Downloads 292
1018 Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana

Authors: Marriette Sakah, Christoph Kuhn, Samuel Gyamfi

Abstract:

Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries.

Keywords: energy efficiency, energy saving potential, renewable energy integration, residential buildings, urban Africa

Procedia PDF Downloads 280
1017 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity

Authors: Anamika Sahu

Abstract:

The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.

Keywords: MASW, mechanical, petrophysical, site characterization

Procedia PDF Downloads 82
1016 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves

Authors: Phillip Ahn, Bryan Kim

Abstract:

Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.

Keywords: heavy metal removal, adsorption, wastewaters, water remediation

Procedia PDF Downloads 285
1015 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo

Abstract:

Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.

Keywords: survey, renewable energy, winery, Spanish case

Procedia PDF Downloads 248
1014 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management

Procedia PDF Downloads 233
1013 Developing Motorized Spectroscopy System for Tissue Scanning

Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken

Abstract:

The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).

Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning

Procedia PDF Downloads 188
1012 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 146
1011 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 410
1010 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery

Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata

Abstract:

A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second order

Keywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery

Procedia PDF Downloads 70
1009 Review of Sulfur Unit Capacity Expansion Options

Authors: Avinashkumar Karre

Abstract:

Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.

Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit

Procedia PDF Downloads 118
1008 A Low-Cost Long-Range 60 GHz Backhaul Wireless Communication System

Authors: Atabak Rashidian

Abstract:

In duplex backhaul wireless communication systems, two separate transmit and receive high-gain antennas are required if an antenna switch is not implemented. Although the switch loss, which is considerable and in the order of 1.5 dB at 60 GHz, is avoided, the large separate antenna systems make the design bulky and not cost-effective. To avoid two large reflectors for such a system, transmit and receive antenna feeds with a common phase center are required. The phase center should coincide with the focal point of the reflector to maximize the efficiency and gain. In this work, we present an ultra-compact design in which stacked patch antennas are used as the feeds for a 12-inch reflector. The transmit antenna is a 1 × 2 array and the receive antenna is a single element located in the middle of the transmit antenna elements. Antenna elements are designed as stacked patches to provide the required impedance bandwidth for four standard channels of WiGigTM applications. The design includes three metallic layers and three dielectric layers, in which the top dielectric layer is a 100 µm-thick protective layer. The top two metallic layers are specified to the main and parasitic patches. The bottom layer is basically ground plane with two circular openings (0.7 mm in diameter) having a center through via which connects the antennas to a single input/output Si-Ge Bi-CMOS transceiver chip. The reflection coefficient of the stacked patch antenna is fully investigated. The -10 dB impedance bandwidth is about 11%. Although the gap between transmit and receive antenna is very small (g = 0.525 mm), the mutual coupling is less than -12 dB over the desired frequency band. The three dimensional radiation patterns of the transmit and receive reflector antennas at 60 GHz is investigated over the impedance bandwidth. About 39 dBi realized gain is achieved. Considering over 15 dBm of output power of the silicon chip in the transmit side, the EIRP should be over 54 dBm, which is good enough for over one kilometer multi Gbps data communications. The performance of the reflector antenna over the bandwidth shows the peak gain is 39 dBi and 40 dBi for the reflector antenna with 2-element and single element feed, respectively. This type of the system design is cost-effective and efficient.

Keywords: Antenna, integrated circuit, millimeter-wave, phase center

Procedia PDF Downloads 118
1007 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction

Procedia PDF Downloads 293
1006 Shooting Gas Cylinders to Prevent Their Explosion in Fire

Authors: Jerzy Ejsmont, Beata Świeczko-Żurek, Grzegorz Ronowski

Abstract:

Gas cylinders in general and particularly cylinders containing acetylene constitute a great potential danger for fire and rescue services involved in salvage operations. Experiments show that gas cylinders with acetylene, oxygen, hydrogen, CNG, LPG or CO2 may blow after short exposition to heat with very destructive effect as fragments of blown cylinder may fly even several hundred meters. In the case of acetylene, the explosion may occur also several hours after the cylinder is cooled down. One of the possible neutralization procedures that in many cases may be used to prevent explosions is shooting dangerous cylinders by rifle bullets. This technique is used to neutralize acetylene cylinders in a few European countries with great success. In Poland research project 'BLOW' was launched in 2014 with the aim to investigate phenomena related to fire influence on industrial and home used cylinders and to evaluate usefulness of the shooting technique. All together over 100 gas cylinders with different gases were experimentally tested at the military blasting grounds and in shelters. During the experiments cylinder temperature and pressure were recorded. In the case of acetylene that is subjected to thermal decomposition also concentration of hydrogen was monitored. Some of the cylinders were allowed to blow and others were shot by snipers. It was observed that shooting hot cylinders has never created more dangerous situations than letting the cylinders to explode spontaneously. In a great majority of cases cylinders that were punctured by bullets released gas in a more or less violent but relatively safe way. The paper presents detailed information about experiments and presents particularities of behavior of cylinders containing different gases. Extensive research was also done in order to select bullets that may be safely and efficiently used to puncture different cylinders. The paper shows also results of those experiments as well as gives practical information related to techniques that should be used during shooting.

Keywords: fire, gas cylinders, neutralization, shooting

Procedia PDF Downloads 256
1005 The Impacts of Foreign Culture on Yoruba Crime Films

Authors: Alonge Isaac Olusola

Abstract:

This paper focuses on the evolution and development of Yoruba theatre during the pre-colonial, colonial and post-colonial years and how Yoruba crime films have been influenced by foreign culture. It emphasizes on the transition of theatre from the ground to the stage and from the stage to the screen with emphasis on the contribution of late Chief Hubert Ogunde who is regarded as the doyen of Yoruba and the entire Nigerian theatre. Using the Theory of Post-colonialism, two modern Yoruba crime films are carefully selected from the numerous available ones to highlight and explain the various aspects of Yoruba films that have been greatly influenced by the foreign cultural practices. The questions to be answered here include 'Which attitudes or cultural practices are widely believed to be that of Yoruba?', 'To what extent are they projected in the selected Yoruba crime films?', 'Which attitudes or cultural practices are widely believed to be foreign among the Yoruba people?', 'To what extent are they projected in the selected Yoruba crime films?'. Although, the British colonial masters granted political independence to Nigeria on October 1, 1960, but a seed of multi-culture and counterculture had been sown into the lives of the Yoruba people. Under the literature review, there is an intensive illumination on some scholars’ ideas and views on what constitutes Yoruba culture, the evolution and development of drama, theatre and films in the Yoruba society and the nature of criminals and criminalities in the Yoruba society and the western world in the pre-colonial and post-colonial times. Furthermore, the processes of interaction between man, his values and his thoughts are also highlighted – a situation that procreates criminal or benevolent acts. Consequently, the paper dwells on how colonialism, despite its so-called merits put the gradual process of urbanization and civilization among the originally rustic, cohesive and moralistic Yoruba society on a supersonic speed that culminated in acquisition of attitudes that are alien to the Yoruba culture. Since a drama is nothing but the theatrical replication of what occurs in the real life, the paper then focuses on the submission that Yoruba crime films have experienced a serious foreign influence in form and content as a result of this encounter. In conclusion, the findings of the impact of foreign cultural practices on Yoruba crime films are highlighted and expatiated with a view to recommending a few steps that could be taken to retain the projection of the original Yoruba cultural practices in Yoruba films, especially the ones that have crime as a theme.

Keywords: culture, films, theatre, Yoruba

Procedia PDF Downloads 299
1004 Physio-Thermal and Geochemical Behavior and Alteration of the Au Pathfinder Gangue Hydrothermal Quartz at the Kubi Gold Ore Deposits

Authors: Gabriel K. Nzulu, Lina Rostorm, Hans Högberg, Jun Liu, per Eklund, Lars Hultman, Martin Magnuson

Abstract:

Altered and gangue quartz in hydrothermal veins from the Kubi Gold deposit in Dunkwa on Offin in the central region of Ghana are investigated for possible Au associated pathfinder minerals and to provide understanding and increase the knowledge of the mineral hosting and alteration processes in quartz. X-ray diffraction, air annealing furnace, differential scanning calorimetry, energy dispersive X-ray spectroscopy, and transmission electron microscopy have been applied on different quartz types outcropping from surface and bed rocks at the Kubi Gold Mining to reveal the material properties at different temperatures. From the diffraction results of the fresh and annealed quartz samples, we find that the samples contain pathfinder and the impurity minerals FeS₂, biotite, TiO₂, and magnetite. These minerals, under oxidation process between 574-1400 °C temperatures experienced hematite alterations and a transformation from α-quartz to β-quartz and further to cristobalite as observed from the calorimetry scans for hydrothermally exposed materials. The energy dispersive spectroscopy revealed elemental species of Fe, S, Mg, K, Al, Ti, Na, Si, O, and Ca contained in the samples and these are attributed to the impurity phase minerals observed in the diffraction. The findings also suggest that during the hydrothermal flow regime, impurity minerals and metals can be trapped by voids and faults. Under favorable temperature conditions the trapped minerals can be altered to change color at different depositional stages by oxidation and reduction processes leading to hematite alteration which is a useful pathfinder in mineral exploration.

Keywords: quartz, hydrothermal, minerals, hematite, x-ray diffraction, crystal-structure, defects

Procedia PDF Downloads 89
1003 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats

Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen

Abstract:

With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 gr. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.

Keywords: fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan

Procedia PDF Downloads 72