Search results for: Wind Energy Conversion Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16875

Search results for: Wind Energy Conversion Systems

11895 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review

Authors: Qiyao Han, Xianhai Meng

Abstract:

Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.

Keywords: fractal, urban infrastructure, sustainability, system-level resilience

Procedia PDF Downloads 258
11894 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK

Authors: Abdulatif Abdulsalam, Mohamed Shaban

Abstract:

This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.

Keywords: power electronics, machine, MATLAB, simulink

Procedia PDF Downloads 335
11893 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 74
11892 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 122
11891 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 455
11890 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture

Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou

Abstract:

Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.

Keywords: eco-design, industrial engineering, LCA, refrigeration system

Procedia PDF Downloads 165
11889 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software

Procedia PDF Downloads 110
11888 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: tourism, hotel recommender system, hybrid, implicit features

Procedia PDF Downloads 261
11887 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks

Authors: Amin Sedighfar, M. R. Moniri

Abstract:

Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. 

Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery

Procedia PDF Downloads 178
11886 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 341
11885 A Study of Key Technologies for the Realization of Smart Grid and Its Research Situation in Pakistan and Abroad

Authors: Arjmand Khaliq, Pemra Sohaib

Abstract:

In this paper smart grid technologies which converts conventional grid into smart grid has been discussed. Integration of advanced technologies including two way communication, advanced control system, sensors, smart metering system and other provide opportunity to make conventional grid a intelligent and automatic system which is named as smart grid. This paper gives the concept of smart grid and functional characteristics of smart grid technology, summed up the research progress in Pakistan and abroad and the significance of developing smart grid. Based on the analysis of the smart grid, smart grid technologies will result a reliable and energy efficient power system in the future. On the other hand smart grid technologies have been reviewed in this paper highlighting the key technologies of smart grid, and points out the problems and challenges in the realization of smart grid.

Keywords: energy, power system reliability, power system monitoring and control, sensor, smart grid, two-way communication

Procedia PDF Downloads 378
11884 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 411
11883 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 349
11882 Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds

Authors: R. Simide, T. Miard

Abstract:

Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology.

Keywords: bioremediation, integrated multi-trophic aquaculture (IMTA), laboratory and commercial scales, recirculating aquaculture, sustainable

Procedia PDF Downloads 143
11881 Quantum Mechanics as A Limiting Case of Relativistic Mechanics

Authors: Ahmad Almajid

Abstract:

The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.

Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics

Procedia PDF Downloads 62
11880 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings

Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin

Abstract:

One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.

Keywords: active bearings, control system, damping, hybrid bearings, stiffness

Procedia PDF Downloads 366
11879 A New IFO Estimation Scheme for Orthogonal Frequency Division Multiplexing Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address a new integer frequency offset (IFO) estimation scheme with an aid of a pilot for orthogonal frequency division multiplexing systems. After correlating each continual pilot with a predetermined scattered pilot, the correlation value is again correlated to alleviate the influence of the timing offset. From numerical results, it is demonstrated that the influence of the timing offset on the IFO estimation is significantly decreased.

Keywords: estimation, integer frequency offset, OFDM, timing offset

Procedia PDF Downloads 551
11878 The European Legislation on End-of-Waste

Authors: Claudio D'Alonzo

Abstract:

According to recent tendencies, progress on resource efficiency is possible and it will lead to economic, environmental, and social benefits. The passage to a circular economy system, in which all the materials and energy will maintain their value for as long as possible, waste is reduced and only a few resources are used, is one of the most relevant parts of the European Union's environmental policy to develop a sustainable, competitive and low-carbon economy. A definition of circular economy can be found in Decision 1386/2013/EU of the European Parliament and of the Council on a General Union Environment Action Programme to 2020 named “Living well, within the limits of our planet”. The purpose of renewing waste management systems in the UE and making the European model one of the most effective in the world, a revised waste legislative framework entered into force in July 2018. Regarding the Italian legislation, the laws to be modified are the Legislative Decree 3 April 2006, n. 152 and the laws ruling waste management, end-of-waste, by-products and, the regulatory principles regarding circular economy. European rules on end-of-waste are not fully harmonised and so there are legal challenges. The target to be achieved is full consistency between the laws implementing waste and chemicals policies. Only in this way, materials will be safe, fit-for-purpose and designed for durability; additionally, they will have a low environmental impact.

Keywords: circular economy, end-of-waste, legislation, secondary raw materials

Procedia PDF Downloads 69
11877 Dy³+/Eu³+ Co-Activated Gadolinium Aluminate Borate Phosphor: Enhanced Luminescence and Color Output Tuning

Authors: Osama Madkhali

Abstract:

GdAl₃(BO₃)₄ phosphors, incorporating Dy³+ and Dy³+/Eu³+ activators, were successfully synthesized via the gel combustion method. Powder X-ray diffraction (XRD) was utilized to ascertain phase purity and assess the impact of dopant concentration on the crystallographic structure. Photoluminescence (PL) measurements revealed that luminescence properties' intensity and lifetime varied with Dy³+ and Eu³+ ion concentrations. The relationship between luminescence intensity and doping concentration was explored in the context of the energy transfer process between Eu³+ and Dy³+ ions. An increase in Eu³+ co-doping concentrations resulted in a decrease in luminescence lifetime. Energy transfer efficiency was significantly enhanced from 26% to 84% with Eu³+ co-doping, as evidenced by decay curve analysis. These findings position GdAl₃(BO₃)4: Dy³+, Eu³+ phosphors as promising candidates for LED applications in solid-state lighting and displays.

Keywords: GdAl₃(BO₃)₄ phosphors, Dy³+/Eu³+ co-doping, photoluminescence (PL) measurements, luminescence properties, LED applications, solid-state lighting

Procedia PDF Downloads 43
11876 The Interaction of Climate Change and Human Health in Italy

Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta

Abstract:

The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.

Keywords: heat waves, Italy, local warming, temperature

Procedia PDF Downloads 225
11875 Methodologies, Systems Development Life Cycle and Modeling Languages in Agile Software Development

Authors: I. D. Arroyo

Abstract:

This article seeks to integrate different concepts from contemporary software engineering with an agile development approach. We seek to clarify some definitions and uses, we make a difference between the Systems Development Life Cycle (SDLC) and the methodologies, we differentiate the types of frameworks such as methodological, philosophical and behavioral, standards and documentation. We define relationships based on the documentation of the development process through formal and ad hoc models, and we define the usefulness of using DevOps and Agile Modeling as integrative methodologies of principles and best practices.

Keywords: methodologies, modeling languages, agile modeling, UML

Procedia PDF Downloads 169
11874 IoT Based Information Processing and Computing

Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed

Abstract:

The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.

Keywords: IoT, computing, information processing, Iot computing

Procedia PDF Downloads 165
11873 Optimized Microwave Pretreatment of Rice Straw for Conversion into Lignin Free and High Crystalline Cellulose

Authors: Mohd Ishfaq Bhat, Navin Chandra Shahi, Umesh Chandra Lohani

Abstract:

The present study aimed to evaluate the effect of microwave application in synergy with the conventional sodium chlorite delignification of rice straw biomass. For the study, Box-Behnken experimental design involving four independent parameters, each with three levels viz. microwave power (480-800 W), irradiation time (4-12 min), bleaching solution concentration (0.4-3.0%), and bleaching time (1-5h) was used. The response was taken in the form of delignification percentage. The optimization of process parameters was done through response surface methodology. The respective optimum parameters of microwave power, irradiation time, bleaching solution concentration, and bleaching time were obtained as 671 W, 8.66 min, 2.67%, and 1h. The delignification percentage achieved at optimum conditions was 93.51%. The spectral, morphological, and x-ray diffraction characteristics of the rice straw powder after delignification showed a complete absence of lignin peaks, deconstruction of lignocellulose complex, and an increase of crystallinity (from 39.8 to 61.6 %).

Keywords: lignocellulosic biomass, delignification, microwaves, rice straw, characterization

Procedia PDF Downloads 134
11872 Investigation of Clustering Algorithms Used in Wireless Sensor Networks

Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci

Abstract:

Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.

Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering

Procedia PDF Downloads 492
11871 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems

Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos

Abstract:

Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.

Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system

Procedia PDF Downloads 172
11870 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan

Abstract:

The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.

Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics

Procedia PDF Downloads 23
11869 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: construction ecology, industrial ecology, urban topology, environmental planning

Procedia PDF Downloads 104
11868 Portable Water Treatment for Flood Resilience

Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed

Abstract:

Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.

Keywords: flood resilience, membrane desalination, portable water treatment, solar energy

Procedia PDF Downloads 277
11867 Experimental Investigation of Energy Performance of Split Type Air Conditioning for Building under Various Indoor Set Point Temperatures and Different Air Flowrates through Cooling Coil

Authors: Niran Watchrodom

Abstract:

An experimental study was carried out to investigate the energy performance of a 1.5 Tr commercial split type air conditioner operating at different indoor set points and different air flowrate circulating through the cooling coil. The refrigerant R-22 was used as working fluid. In this paper, the test conditions considered were varied as follows: The room temperature varied from 23, 24, 25, 26, and 27 C, the air velocity passing through the evaporator was varied from 1.9, 2.1 and 2.4 m/s. The air velocity passing through the condenser was kept constant at 5 m/s. The results showed that when the indoor temperature was high, 27 C, and air velocity was 1.9 m/s, the coefficient of performance (COP) of the system was 3.74. The electrical power consumption of compressor was 1.64 kW, the rate of heat transfer in the condenser and evaporator were 7.79 and 6.10 kW, respectively. The amount corresponding amount of condensed water coming out of evaporator was 8.20 liter. The system can applied to commercial building.

Keywords: condensed water, coefficient of performance, air velocity

Procedia PDF Downloads 427
11866 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems

Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani

Abstract:

The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.

Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems

Procedia PDF Downloads 119