Search results for: facade performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13034

Search results for: facade performance

8084 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products

Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil

Abstract:

In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.

Keywords: hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff

Procedia PDF Downloads 219
8083 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 120
8082 Enhancing Project Success: A Case Study of Investment Strategies and Planning Practices in Rwanda’s Housing Projects Managed by Rwanda Social Security Board

Authors: Amina Umulisa

Abstract:

Background: Despite efforts to enhance profitability and project planning, Rwanda has experienced a decline in project success rates, notably in housing projects managed by the Rwanda Social Security Board (RSSB). This study aims to assess the impact of investment strategies and project planning practices on the performance of pension funds projects in Rwanda, focusing on housing projects by RSSB. Methods: Using descriptive and correlational research designs, this study surveyed 109 randomly selected respondents from a pool of 148 workers. Data analysis was conducted using descriptive and inferential statistics in STATA version 18. Results: Findings revealed that 54% of respondents acknowledged the importance of personnel generation. Additionally, 61% agreed with the effectiveness of training programs, and 79% supported the cost of human resource utilization. In terms of project management practices, 65.7% could determine when a project needed adjustments, 65.7% agreed with the approved budget, and 73% supported forecasted expenses. Furthermore, 68% agreed with order placement, 76.0% with using the right materials, and 64.4% with defining project scope. The study found significant associations between order placement and project quality outcomes (r=0.711, P-value <0.001), as well as with time management (Pearson was 0.701 and sing was 0.00) and cost management (r=0.885, P-value <0.001). Moreover, project time targets were found to significantly affect quality management (Pearson was 0.798, sing was 0.000), time management, and cost management (r=0.740, P-value <0.001). Conclusion: The findings highlight the positive association between the project implementation stage and quality management, indicating effective project planning practices among senior staff. However, there is a need to enhance project team collaboration and coordination to improve the performance of constructed houses.

Keywords: project success rates, investment strategies, training programs, cost management

Procedia PDF Downloads 59
8081 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 68
8080 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 217
8079 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 290
8078 Profit Share in Income: An Analysis of Its Influence on Macroeconomic Performance

Authors: Alain Villemeur

Abstract:

The relationships between the profit share in income on the one hand and the growth rates of output and employment on the other hand have been studied for 17 advanced economies since 1961. The vast majority (98%) of annual values for the profit share fall between 20% and 40%, with an average value of 33.9%. For the 17 advanced economies, Gross Domestic Product and productivity growth rates tend to fall as the profit share in income rises. For the employment growth rates, the relationships are complex; nevertheless, over long periods (1961-2000), it appears that the more job-creating economies are Australia, Canada, and the United States; they have experienced a profit share close to 1/3. This raises a number of questions, not least the value of 1/3 for the profit share and its role in macroeconomic fundamentals. To explain these facts, an endogenous growth model is developed. This growth and distribution model reconciles the great ideas of Kaldor (economic growth as a chain reaction), of Keynes (effective demand and marginal efficiency of capital) and of Ricardo (importance of the wage-profit distribution) in an economy facing creative destruction. A production function is obtained, depending mainly on the growth of employment, the rate of net investment and the profit share in income. In theory, we show the existence of incentives: an incentive for job creation when the profit share is less than 1/3 and another incentive for job destruction in the opposite case. Thus, increasing the profit share can boost the employment growth rate until it reaches the value of 1/3; otherwise lowers the employment growth rate. Three key findings can be drawn from these considerations. The first reveals that the best GDP and productivity growth rates are obtained with a profit share of less than 1/3. The second is that maximum job growth is associated with a 1/3 profit share, given the existence of incentives to create more jobs when the profit share is less than 1/3 or to destroy more jobs otherwise. The third is the decline in performance (GDP growth rate and productivity growth rate) when the profit share increases. In conclusion, increasing the profit share in income weakens GDP growth or productivity growth as a long-term trend, contrary to the trickle-down hypothesis. The employment growth rate is maximum for a profit share in income of 1/3. All these lessons suggest macroeconomic policies considering the profit share in income.

Keywords: advanced countries, GDP growth, employment growth, profit share, economic policies

Procedia PDF Downloads 72
8077 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation

Authors: Carlos Riascos, Peter Thomson

Abstract:

Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy

Procedia PDF Downloads 301
8076 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 118
8075 A Survey of Baseband Architecture for Software Defined Radio

Authors: M. A. Fodha, H. Benfradj, A. Ghazel

Abstract:

This paper is a survey of recent works that proposes a baseband processor architecture for software defined radio. A classification of different approaches is proposed. The performance of each architecture is also discussed in order to clarify the suitable approaches that meet software-defined radio constraints.

Keywords: multi-core architectures, reconfigurable architectures, software defined radio, baseband processor

Procedia PDF Downloads 478
8074 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature

Procedia PDF Downloads 89
8073 Microbial Fuel Cells: Performance and Applications

Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled

Abstract:

This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.

Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network

Procedia PDF Downloads 212
8072 Numerical Study on the Effects of Truncated Ribs on Film Cooling with Ribbed Cross-Flow Coolant Channel

Authors: Qijiao He, Lin Ye

Abstract:

To evaluate the effect of the ribs on internal structure in film hole and the film cooling performance on outer surface, the numerical study investigates on the effects of rib configuration on the film cooling performance with ribbed cross-flow coolant channel. The base smooth case and three ribbed cases, including the continuous rib case and two cross-truncated rib cases with different arrangement, are studied. The distributions of adiabatic film cooling effectiveness and heat transfer coefficient are obtained under the blowing ratios with the value of 0.5 and 1.0, respectively. A commercial steady RANS (Reynolds-averaged Navier-Stokes) code with realizable k-ε turbulence model and enhanced wall treatment were performed for numerical simulations. The numerical model is validated against available experimental data. The two cross-truncated rib cases produce approximately identical cooling effectiveness compared with the smooth case under lower blowing ratio. The continuous rib case significantly outperforms the other cases. With the increase of blowing ratio, the cases with ribs are inferior to the smooth case, especially in the upstream region. The cross-truncated rib I case produces the highest cooling effectiveness among the studied the ribbed channel case. It is found that film cooling effectiveness deteriorates with the increase of spiral intensity of the cross-flow inside the film hole. Lower spiral intensity leads to a better film coverage and thus results in better cooling effectiveness. The distinct relative merits among the cases at different blowing ratios are explored based on the aforementioned dominant mechanism. With regard to the heat transfer coefficient, the smooth case has higher heat transfer intensity than the ribbed cases under the studied blowing ratios. The laterally-averaged heat transfer coefficient of the cross-truncated rib I case is higher than the cross-truncated rib II case.

Keywords: cross-flow, cross-truncated rib, film cooling, numerical simulation

Procedia PDF Downloads 138
8071 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 330
8070 Effects of Tillage and Poultry Manure on Soil Properties and Yam Performance on Alfisol in Southwest Nigeria

Authors: Adeleye Ebenezer Omotayo

Abstract:

The main effects of tillage, poultry manure and interaction effects of tillage-poultry manure combinations on soil characteristics and yam yield were investigated in a factorial experiment involving four tillage techniques namely (ploughing (p), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and poultry manure at two levels 0 t ha-1 and 10 t ha-1 arranged in split-plot design. Data obtained were subjected to analysis of variance using Statistical Analysis System (SAS) Institute Package. Soil moisture content, bulk density and total porosity were significantly (p>0.05) influenced by soil tillage techniques. Manually heaped and ridged plots had the lowest soil bulk density, moisture content and highest total porosity. The soil total N, exchangeable Mg, k, base saturation and CEC were better enhanced in manually tilled plots. Soil nutrients status declined at the end of the second cropping for all the tillage techniques in the order PH>P>MH>MR. Yam tuber yields were better enhanced in manually tilled plots than mechanically tilled plots. Poultry manure application reduced soil bulk density, temperature, increased total porosity and soil moisture content. It also improved soil organic matter, total N, available P, exchangeable Mg, Ca, K and lowered exchange acidity. It also increased yam tuber yield significantly. Tillage techniques plots amended with poultry manure enhanced yam tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that yam production on alfisol in Southwest Nigeria requires loose soil structure for tuber development and that the use of poultry manure in combination with tillage is recommended as it will ensure stability of soil structure, improve soil organic matter status, nutrient availability and high yam tuber yield. Also, it will help to reduce the possible deleterious effects of tillage on soil properties and yam performance.

Keywords: ploughing, poultry manure, yam, yield

Procedia PDF Downloads 276
8069 Queuing Analysis and Optimization of Public Vehicle Transport Stations: A Case of South West Ethiopia Region Vehicle Stations

Authors: Mequanint Birhan

Abstract:

Modern urban environments present a dynamically growing field where, notwithstanding shared goals, several mutually conflicting interests frequently collide. However, it has a big impact on the city's socioeconomic standing, waiting lines and queues are common occurrences. This results in extremely long lines for both vehicles and people on incongruous routes, service coagulation, customer murmuring, unhappiness, complaints, and looking for other options sometimes illegally. The root cause of this is corruption, which leads to traffic jams, stopping, and packing vehicles beyond their safe carrying capacity, and violating the human rights and freedoms of passengers. This study focused on the optimizing time of passengers had to wait in public vehicle stations. This applied research employed both data gathering sources and mixed approaches, then 166 samples of key informants of transport station were taken by using the Slovin sampling formula. The length of time vehicles, including the drivers and auxiliary drivers ‘Weyala', had to wait was also studied. To maximize the service level at vehicle stations, a queuing model was subsequently devised ‘Menaharya’. Time, cost, and quality encompass performance, scope, and suitability for the intended purposes. The minimal response time for passengers and vehicles queuing to reach their final destination at the stations of the Tepi, Mizan, and Bonga towns was determined. A new bus station system was modeled and simulated by Arena simulation software in the chosen study area. 84% improvement on cost reduced by 56.25%, time 4hr to 1.5hr, quality, safety and designed load performance calculations employed. Stakeholders are asked to put the model into practice and monitor the results obtained.

Keywords: Arena 14 automatic rockwell, queue, transport services, vehicle stations

Procedia PDF Downloads 81
8068 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification

Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto

Abstract:

Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.

Keywords: membranes, 2D materials, hydrogen purification, nanocomposites

Procedia PDF Downloads 142
8067 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: congestion, ITS strategies, mobility, safety

Procedia PDF Downloads 446
8066 Ambient Electrospray Deposition: An Efficient Technique to Immobilize Laccase on Cheap Electrodes With Unprecedented Reuse and Storage Performances

Authors: Mattea Carmen Castrovilli, Antonella Cartoni

Abstract:

Electrospray ionisation (ESI), a well-established technique widely used to produce ion beams of biomolecules in mass spectrometry (ESI-MS), can be used for ambient soft landing of enzymes on a specific substrate. In this work, we show how the ambient electrospray deposition (ESD) technique can be successfully exploited for manufacturing a promising, green-friendly electrochemical amperometric laccase-based biosensor with unprecedented reuse and storage performance. These biosensors have been manufactured by spraying a laccase solution of 2μg/μL at 20% of methanol on a commercial carbon screen printed electrode (C-SPE) using a custom ESD set-up. The laccase-based ESD biosensor has been tested against catechol compounds in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from cadmium, chrome, arsenic, and zinc and without any memory effects, but showing a matrix effect in lake and well water. The ESD biosensor shows enhanced performances compared to the ones fabricated with other immobilization methods, like drop-casting. Indeed, it retains 100% activity up to two months of storage at ambient conditions without any special care and working stability up to 63 measurements on the same electrode just prepared and 20 on a one-year-old electrode subjected to redeposition together with a 100% resistance to use of the same electrode in subsequent days. The ESD method is a one-step, environmentally friendly method that allows the deposition of the bio-recognition layer without using any additional chemicals. The promising results in terms of storage and working stability also obtained with the more fragile lactate oxidase enzyme suggest these improvements should be attributed to the ESD technique rather than to the bioreceptor, highlighting how the ESD could be useful in reducing pollution from disposable devices. Acknowledgment: The understanding at the molecular level of this promising biosensor by using different spectroscopies, microscopies and analytical techniques is the subject of our PRIN 2022 project ESILARANTE.

Keywords: reuse, storage performance, immobilization, electrospray deposition, biosensor, laccase, catechol detection, green chemistry

Procedia PDF Downloads 69
8065 Basic Business-Forces behind the Surviving and Sustainable Organizations: The Case of Medium Scale Contractors in South Africa

Authors: Iruka C. Anugwo, Winston M. Shakantu

Abstract:

The objective of this study is to uncover the basic business-forces that necessitated the survival and sustainable performance of the medium scale contractors in the South African construction market. This study is essential as it set to contribute towards long-term strategic solutions for combating the incessant failure of start-ups construction organizations within South African. The study used a qualitative research methodology; as the most appropriate approach to elicit and understand, and uncover the phenomena that are basic business-forces for the active contractors in the market. The study also adopted a phenomenological study approach; and in-depth interviews were conducted with 20 medium scale contractors in Port Elizabeth, South Africa, between months of August to October 2015. This allowed for an in-depth understanding of the critical and basic business-forces that influenced their survival and performance beyond the first five years of business operation. Findings of the study showed that for potential contractors (startups), to survival in the competitive business environment such as construction industry, they must possess the basic business-forces. These forces are educational knowledge in construction and business management related disciplines, adequate industrial experiences, competencies and capabilities to delivery excellent services and products as well as embracing the spirit of entrepreneurship. Convincingly, it can be concluded that the strategic approach to minimize the endless failure of startups construction businesses; the potential construction contractors must endeavoring to access and acquire the basic educationally knowledge, training and qualification; need to acquire industrial experiences in collaboration with required competencies, capabilities and entrepreneurship acumen. Without these basic business-forces as been discovered in this study, the majority of the contractors gaining entrance in the market will find it difficult to develop and grow a competitive and sustainable construction organization in South Africa.

Keywords: basic business-forces, medium scale contractors, South Africa, sustainable organisations

Procedia PDF Downloads 297
8064 A Universal Approach to Categorize Failures in Production

Authors: Konja Knüppel, Gerrit Meyer, Peter Nyhuis

Abstract:

The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems.

Keywords: failure categorization, failure management, logistic performance, production optimization

Procedia PDF Downloads 379
8063 Implementation and Challenges of Assessment Methods in the Case of Physical Education Class in Some Selected Preparatory Schools of Kirkos Sub-City

Authors: Kibreab Alene Fenite

Abstract:

The purpose of this study is to investigate the implementation and challenges of different assessment methods for physical education class in some selected preparatory schools of kirkos sub city. The participants in this study are teachers, students, department heads and school principals from 4 selected schools. Of the total 8 schools offering in kirkos sub city 4 schools (Dandi Boru, Abiyot Kirse, Assay, and Adey Ababa) are selected by using simple random sampling techniques and from these schools all (100%) of teachers, 100% of department heads and school principals are taken as a sample as their number is manageable. From the total 2520 students, 252 (10%) of students are selected using simple random sampling. Accordingly, 13 teachers, 252 students, 4 department heads and 4 school principals are taken as a sample from the 4 selected schools purposefully. As a method of data gathering tools; questionnaire and interview are employed. To analyze the collected data, both quantitative and qualitative methods are used. The result of the study revealed that assessment in physical education does not implement properly: lack of sufficient materials, inadequate time allotment, large class size, and lack of collaboration and working together of teachers towards assessing the performance of students, absence of guidelines to assess the physical education subject, no different assessment method that is implementing on students with disabilities in line with their special need are found as major challenges in implementing the current assessment method of physical education. To overcome these problems the following recommendations have been forwarded. These are: the necessary facilities and equipment should be available; In order to make reliable, accurate, objective and relevant assessment, teachers of physical education should be familiarized with different assessment techniques; Physical education assessment guidelines should be prepared, and guidelines should include different types of assessment methods; qualified teachers should be employed, and different teaching room must be build.

Keywords: assessment, challenges, equipment, guidelines, implementation, performance

Procedia PDF Downloads 285
8062 Effects of Wearable Garments on Postural Regulation in Community-Dwelling Elderly Adults

Authors: Mei Teng Woo, Keith Davids, Jarmo Liukkonen, Jia Yi Chow, Timo Jaakkola

Abstract:

Wearable garments such as tapes, compression garments, and braces could improve proprioception and reduced postural sway. The aim of this study was to examine the effects of wearable garments on postural regulation in a sample of community-dwelling elderly individuals, aged 65 years. It was hypothesized that wearable garments such as socks would provide stimulation to lower leg mechanoreceptors, and help participants achieve better postural regulation. Participants (N=63) performed a 30-s Romberg balance test protocol under four conditions (barefoot; wearing commercial socks; wearing clinical compression socks; wearing non-clinical compression socks), in a counterbalanced order, with four levels of performance difficulty: (1) standing on a stable surface with open eyes (SO); (2) a stable surface with closed eyes (SC); (3) a foam surface with open eyes (FO); and (4) a foam surface with closed eyes (FC). Centre of pressure (CoP) measurements included postural sway area (C90 area), trace length (TL) and sway velocity. Thirty-five participants (55.6%) showed positive effects of wearing the socks (responded group). In the responded group, it was revealed that socks showed significant differences in SO, SC and FO conditions for the two CoP measurements - TL and sway velocity (p < 0.05). In contrast, in the non-responded group, barefoot condition significantly decreased the TL and velocity in the SO condition. From the positive effects observed in the responded group, it is possible that wearable garments provide sensory cues that could interact with a biological cueing system to enhance performance in the postural regulation system. This study suggests that individuals respond to the socks treatments differently and future research should be undertaken to examine the factors that benefited the responded group of participants.

Keywords: community-dwelling, elderly adults, postural regulation, wearable garments

Procedia PDF Downloads 339
8061 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 96
8060 Volunteers’ Preparedness for Natural Disasters and EVANDE Project

Authors: A. Kourou, A. Ioakeimidou, E. Bafa, C. Fassoulas, M. Panoutsopoulou

Abstract:

The role of volunteers in disaster management is of decisive importance and the need of their involvement is well recognized, both for prevention measures and for disaster management. During major catastrophes, whereas professional personnel are outsourced, the role of volunteers is crucial. In Greece experience has shown that various groups operating in the civil protection mechanism like local administration staff or volunteers, in many cases do not have the necessary knowledge and information on best practices to act against natural disasters. One of the major problems is the lack of volunteers’ education and training. In the above given framework, this paper presents the results of a survey aimed to identify the level of education and preparedness of civil protection volunteers in Greece. Furthermore, the implementation of earthquake protection measures at individual, family and working level, are explored. More specifically, the survey questionnaire investigates issues regarding pre-earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans in the workplace. The questionnaires were administered to citizens from different regions of the country and who attend the civil protection training program: “Protect Myself and Others”. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self-protective actions; b) existence of emergency planning at home; c) existence of emergency planning at workplace (hazard mitigation actions, evacuation plan, and performance of drills); and, d) respondents` perception about their level of earthquake preparedness. The results revealed a serious lack of knowledge and preparedness among respondents. Taking into consideration the aforementioned gap and in order to raise awareness and improve preparedness and effective response of volunteers acting in civil protection, the EVANDE project was submitted and approved by the European Commission (EC). The aim of that project is to educate and train civil protection volunteers on the most serious natural disasters, such as forest fires, floods, and earthquakes, and thus, increase their performance.

Keywords: civil protection, earthquake, preparedness, volunteers

Procedia PDF Downloads 246
8059 Experiences of Youth in Learning About Healthy Intimate Relationships: An Institutional Ethnography

Authors: Anum Rafiq

Abstract:

Adolescence is a vulnerable period for youth across the world. It is a period of new learning with opportunities to understand and develop perspectives on health and well-being. With youth beginning to engage in intimate relationships at an earlier age in the 21st century, concentrating on the learning opportunity they have in school is paramount. The nature of what has been deemed important to teach in schools has changed throughout history, and the focus has shifted from home/family skills to teaching youth how to be competitive in the job market. Amidst this emphasis, opportunities for them exist to learn about building healthy intimate relationships, one of the foundational elements of most people’s lives. Using an Institutional Ethnography (IE), the lived experiences of youth in how they understand intimate relationships and how their learning experience is organized through the high school Health and Physical Education (H&PE) course is explored. An empirical inquiry into how the actual work of teachers and youth are socially organized by a biomedical, employment-related, and efficiency-based discourse is provided. Through thirty-two qualitative interviews with teachers and youth, a control of ruling relations such as institutional accountability circuits, performance reports, and timetabling over the experience of teachers and youth is found. One of the facets of the institutional accountability circuit is through the social organization of teaching and learning about healthy intimate relationships being framed through a biomedical discourse. In addition, the role of a hyper-focus on performance and evaluation is found as paramount in situating healthy intimacy discussions as inferior to neoliberally charged productivity measures such as employment skills. Lastly, due to the nature of institutional policies such as regulatory guidelines, teachers are largely influenced to avoid diving into discussions deemed risky or taboo by society, such as healthy intimacy in adolescence. The findings show how texts such as the H&PE curriculum, the Ontario College of Teachers (OCT) guidelines, Ministry of Education Performance Reports, and the timetable organize the day-to-day activities of teachers and students and reproduce different disjunctures for youth. This disjuncture includes some of their experiences being subordinated, difficulty relating to curriculum, and an experience of healthy living discussions being skimmed over across sites. The findings detail that the experience of youth in learning about healthy intimate relationships is not akin to the espoused vision outlined in policy documents such as the H&PE (2015) curriculum policy. These findings have implications for policymakers, activists, and school administration alike, which call for an investigation into who is in power when it comes to youth’s learning needs, as a pivotal period where youth can be equipped with life-changing knowledge is largely underutilized. A restructuring of existing institutional practices that allow for the social and institutional flexibility required to broach the topic of healthy intimacy in a comprehensive manner is required.

Keywords: health policy, intimate relationships, youth, education, ruling relations, sexual education, violence prevention

Procedia PDF Downloads 73
8058 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature

Authors: Chin-Yun Chen

Abstract:

Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.

Keywords: numerical quadrature, error estimation, derivative free method, interval computation

Procedia PDF Downloads 469
8057 The Rule of Architectural Firms in Enhancing Building Energy Efficiency in Emerging Countries: Processes and Tools Evaluation of Architectural Firms in Egypt

Authors: Mahmoud F. Mohamadin, Ahmed Abdel Malek, Wessam Said

Abstract:

Achieving energy efficient architecture in general, and in emerging countries in particular, is a challenging process that requires the contribution of various governmental, institutional, and individual entities. The rule of architectural design is essential in this process as it is considered as one of the earliest steps on the road to sustainability. Architectural firms have a moral and professional responsibility to respond to these challenges and deliver buildings that consume less energy. This study aims to evaluate the design processes and tools in practice of Egyptian architectural firms based on a limited survey to investigate if their processes and methods can lead to projects that meet the Egyptian Code of Energy Efficiency Improvement. A case study of twenty architectural firms in Cairo was selected and categorized according to their scale; large-scale, medium-scale, and small-scale. A questionnaire was designed and distributed to the firms, and personal meetings with the firms’ representatives took place. The questionnaire answered three main points; the design processes adopted, the usage of performance-based simulation tools, and the usage of BIM tools for energy efficiency purposes. The results of the study revealed that only little percentage of the large-scale firms have clear strategies for building energy efficiency in their building design, however the application is limited to certain project types, or according to the client request. On the other hand, the percentage of medium-scale firms is much less, and it is almost absent in the small-scale ones. This demonstrates the urgent need of enhancing the awareness of the Egyptian architectural design community of the great importance of implementing these methods starting from the early stages of the building design. Finally, the study proposed recommendations for such firms to be able to create a healthy built environment and improve the quality of life in emerging countries.

Keywords: architectural firms, emerging countries, energy efficiency, performance-based simulation tools

Procedia PDF Downloads 286
8056 Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems

Authors: Samuel Kaspi, Sitalakshmi Venkatraman

Abstract:

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Keywords: in-memory database, disk-based system, hybrid database, concurrency control

Procedia PDF Downloads 422
8055 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging

Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland

Abstract:

A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.

Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography

Procedia PDF Downloads 161