Search results for: carbon element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5984

Search results for: carbon element

1094 Repeated Batch Cultivation: A Novel Empty and Fill Strategy for the Enhanced Production of a Biodegradable Polymer, Polyhydroxy Alkanoate by Alcaligenes latus

Authors: Geeta Gahlawat, Ashok Kumar Srivastava

Abstract:

In the present study, a simple drain and fill protocol strategy of repeated batch was adopted for enhancement in polyhydroxyalkanoates (PHAs) production using alcaligenes latus DSM 1124. Repeated batch strategy helped in increasing the longevity of otherwise decaying culture in the bioreactor by supplementing fresh substrates during each cycle of repeated-batch. The main advantages of repeated batch are its ease of operation, enhancement of culture stability towards contamination, minimization of pre-culture effects and maintenance of organism at high growth rates. The cultivation of A. latus was carried out in 7 L bioreactor containing 4 L optimized nutrient medium and a comparison with the batch mode fermentation was done to evaluate the performance of repeated batch in terms of PHAs accumulation and productivity. The statistically optimized medium recipe consisted of: 25 g/L Sucrose, 2.8 g/L (NH4)2SO4, 3.25 g/L KH2PO4, 3.25 g/L Na2HPO4, 0.2 g/L MgSO4, 1.5 mL/L trace element solution. In this strategy, 20% (v/v) of the culture broth was removed from the reactor and supplemented with an equal volume of fresh medium when sucrose concentration inside the reactor decreased below 8 g/L. The fermenter was operated for three repeated batch cycles and fresh nutrient feeding was done at 27 h, 48 h, and 60 h. Repeated batch operation resulted in a total biomass of 27.89 g/L and PHAs concentration 20.55 g/L at the end of 69 h which was a marked improvement as compared to batch cultivation (8.71 g/L biomass and 6.24 g/L PHAs). This strategy demonstrated 3.3 fold and 1.8 fold increase in PHAs concentration and volumetric productivity, respectively as compared to batch cultivation. Repeated batch cultivation strategy had also the benefit of avoiding non-productive time period required for cleaning, refilling and sterilization of bioreactor, thereby increasing the overall volumetric productivity and making the entire process cost-effective too.

Keywords: alcaligenes, biodegradation, polyhydroxyalkanoates, repeated batch

Procedia PDF Downloads 368
1093 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 184
1092 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 472
1091 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams

Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann

Abstract:

A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.

Keywords: damage mechanics, finite element, steel structures, web openings

Procedia PDF Downloads 171
1090 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 154
1089 Adsorption of Atmospheric Gases Using Atomic Clusters

Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko

Abstract:

First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.

Keywords: catalyst, gaussian, nanoparticles, oxidation

Procedia PDF Downloads 94
1088 A Study of the Implications for the Health and Wellbeing of Energy-Efficient House Occupants: A UK-Based Investigation of Indoor Climate and Indoor Air Quality

Authors: Patricia Kermeci

Abstract:

Policies related to the reduction of both carbon dioxide and energy consumption within the residential sector have contributed towards a growing number of energy-efficient houses being built in several countries. Many of these energy-efficient houses rely on the construction of very well insulated and highly airtight structures, ventilated mechanically. Although energy-efficient houses are indeed more energy efficient than conventional houses, concerns have been raised over the quality of their indoor air and, consequently, the possible adverse health and wellbeing effects for their occupants. Using a longitudinal study design over three different weather seasons (winter, spring and summer), this study has investigated the indoor climate and indoor air quality of different rooms (bedroom, living room and kitchen) in five energy-efficient houses and four conventional houses in the UK. Occupants have kept diaries of their activities during the studied periods and interviews have been conducted to investigate possible behavioural explanations for the findings. Data has been compared with reviews of epidemiological, toxicological and other health related published literature to reveals three main findings. First, it shows that the indoor environment quality of energy-efficient houses cannot be treated as a holistic entity as different rooms presented dissimilar indoor climate and indoor air quality. Thus, such differences might contribute to the health and wellbeing of occupants in different ways. Second, the results show that the indoor environment quality of energy-efficient houses can vary following changes in weather season, leaving occupants at a lower or higher risk of adverse health and wellbeing effects during different weather seasons. Third, one cannot assume that even identical energy-efficient houses provide a similar indoor environment quality. Fourth, the findings reveal that the practices and behaviours of the occupants of energy-efficient houses likely determine whether they enjoy a healthier indoor environment when compared with their control houses. In conclusion, it has been considered vital to understand occupants’ practices and behaviours in order to explain the ways they might contribute to the indoor climate and indoor air quality in energy-efficient houses.

Keywords: energy-efficient house, health and wellbeing, indoor environment, indoor air quality

Procedia PDF Downloads 229
1087 Clove Oil Incorporated Biodegradable Film for Active Food Packaging

Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal

Abstract:

Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.

Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)

Procedia PDF Downloads 149
1086 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 80
1085 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 267
1084 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 255
1083 Risks of Traditional Practices: Chemical and Health Assessment of Bakhour

Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes

Abstract:

Bakhour or Arabian incense is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.

Keywords: Bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis

Procedia PDF Downloads 426
1082 Chemical and Health Assessment of Bakhour: Risks of Traditional Practices

Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes

Abstract:

Bakhour, or Arabian incense, is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately, only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals.. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins, and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.

Keywords: bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis

Procedia PDF Downloads 292
1081 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 428
1080 Modelling of Damage as Hinges in Segmented Tunnels

Authors: Gelacio JuáRez-Luna, Daniel Enrique GonzáLez-RamíRez, Enrique Tenorio-Montero

Abstract:

Frame elements coupled with springs elements are used for modelling the development of hinges in segmented tunnels, the spring elements modelled the rotational, transversal and axial failure. These spring elements are equipped with constitutive models to include independently the moment, shear force and axial force, respectively. These constitutive models are formulated based on damage mechanics and experimental test reported in the literature review. The mesh of the segmented tunnels was discretized in the software GID, and the nonlinear analyses were carried out in the finite element software ANSYS. These analyses provide the capacity curve of the primary and secondary lining of a segmented tunnel. Two numerical examples of segmented tunnels show the capability of the spring elements to release energy by the development of hinges. The first example is a segmental concrete lining discretized with frame elements loaded until hinges occurred in the lining. The second example is a tunnel with primary and secondary lining, discretized with a double ring frame model. The outer ring simulates the segmental concrete lining and the inner ring simulates the secondary cast-in-place concrete lining. Spring elements also modelled the joints between the segments in the circumferential direction and the ring joints, which connect parallel adjacent rings. The computed load vs displacement curves are congruent with numerical and experimental results reported in the literature review. It is shown that the modelling of a tunnel with primary and secondary lining with frame elements and springs provides reasonable results and save computational cost, comparing with 2D or 3D models equipped with smeared crack models.

Keywords: damage, hinges, lining, tunnel

Procedia PDF Downloads 387
1079 Scientific Expedition to Understand the Crucial Issues of Rapid Lake Expansion and Moraine Dam Instability Phenomena to Justify the Lake Lowering Effort of Imja Lake, Khumbu Region of Sagarmatha, Nepal

Authors: R. C. Tiwari, N. P. Bhandary, D. B. Thapa Chhetri, R. Yatabe

Abstract:

The research enlightens the various issues of lake expansion and stability of the moraine dam of Imja lake. The Imja lake considered that the world highest altitude lake (5010m from m.s.l.), located in the Khumbu, Sagarmatha region of Nepal (27.90 N and 86.90 E) was reported as one of the fast growing glacier lakes in the Nepal Himalaya. The research explores a common phenomenon of lake expansion and stability issues of moraine dam to justify the necessity of lake lowering efforts if any in future in other glacier lakes in Nepal Himalaya. For this, we have explored the root causes of rapid lake expansion along with crucial factors responsible for the stability of moraine mass. This research helps to understand the structure of moraine dam and the ice, water and moraine interactions to the strength of moraine dam. The nature of permafrost layer and its effects on moraine dam stability is also studied here. The detail Geo-Technical properties of moraine mass of Imja lake gives a clear picture of the strength of the moraine material and their interactions. The stability analysis of the moraine dam under the consideration of strong ground motion of 7.8Mw 2015 Barpak-Gorkha and its major aftershock 7.3Mw Kodari, Sindhupalchowk-Dolakha border, Nepal earthquakes have also been carried out here to understand the necessity of lake lowering efforts. The lake lowering effort was recently done by Nepal Army by constructing an open channel and lowered 3m. And, it is believed that the entire region is now safe due to continuous draining of lake water by 3m. But, this option does not seem adequate to offer a significant risk reduction to downstream communities in this much amount of volume and depth, lowering as in the 75 million cubic meter water impounded with an average depth of 148.9m.

Keywords: finite element method, glacier, moraine, stability

Procedia PDF Downloads 211
1078 Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System

Authors: Gianvito Colucci, Valeria Di Cosmo, Matteo Nicoli, Orsola Maria Robasto, Laura Savoldi

Abstract:

The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework.

Keywords: energy security, energy system optimization models, hydrogen, natural gas, open-source modeling, scenario analysis, TEMOA

Procedia PDF Downloads 114
1077 Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain

Authors: Ravinder Kaur

Abstract:

Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation.

Keywords: cerebrovascular disease, neuroimaging, phase contrast MRI, cerebrovascular reactivity, carbon dioxide

Procedia PDF Downloads 145
1076 Optimum Structural Wall Distribution in Reinforced Concrete Buildings Subjected to Earthquake Excitations

Authors: Nesreddine Djafar Henni, Akram Khelaifia, Salah Guettala, Rachid Chebili

Abstract:

Reinforced concrete shear walls and vertical plate-like elements play a pivotal role in efficiently managing a building's response to seismic forces. This study investigates how the performance of reinforced concrete buildings equipped with shear walls featuring different shear wall-to-frame stiffness ratios aligns with the requirements stipulated in the Algerian seismic code RPA99v2003, particularly in high-seismicity regions. Seven distinct 3D finite element models are developed and evaluated through nonlinear static analysis. Engineering Demand Parameters (EDPs) such as lateral displacement, inter-story drift ratio, shear force, and bending moment along the building height are analyzed. The findings reveal two predominant categories of induced responses: force-based and displacement-based EDPs. Furthermore, as the shear wall-to-frame ratio increases, there is a concurrent increase in force-based EDPs and a decrease in displacement-based ones. Examining the distribution of shear walls from both force and displacement perspectives, model G with the highest stiffness ratio, concentrating stiffness at the building's center, intensifies induced forces. This configuration necessitates additional reinforcements, leading to a conservative design approach. Conversely, model C, with the lowest stiffness ratio, distributes stiffness towards the periphery, resulting in minimized induced shear forces and bending moments, representing an optimal scenario with maximal performance and minimal strength requirements.

Keywords: dual RC buildings, RC shear walls, modeling, static nonlinear pushover analysis, optimization, seismic performance

Procedia PDF Downloads 55
1075 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 72
1074 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.

Keywords: HVFA concrete, NDT testing, residual strength

Procedia PDF Downloads 385
1073 Thermosonic Devulcanization of Waste Ground Rubber Tires by Quaternary Ammonium-Based Ternary Deep Eutectic Solvents and the Effect of α-Hydrogen

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid

Abstract:

Landfills, water contamination, and toxic gas emission are a few impacts faced by the environment due to the increasing number of αof waste rubber tires (WRT). In spite of such concerning issue, only minimal efforts are taken to reclaim or recycle these wastes as their products are generally not-profitable for companies. Unlike the typical reclamation process, devulcanization is a method to selectively cleave sulfidic bonds within vulcanizates to avoid polymeric scissions that compromise elastomer’s mechanical and tensile properties. The process also produces devulcanizates that are re-processable similar to virgin rubber. Often, a devulcanizing agent is needed. In the current study, novel and sustainable ammonium chloride-based ternary deep eutectic solvents (TDES), with a different number of α-hydrogens, were utilised to devulcanize ground rubber tire (GRT) as an effort to implement green chemistry to tackle such issue. 40-mesh GRT were soaked for 1 day with different TDESs and sonicated at 37-80 kHz for 60-120 mins and heated at 100-140oC for 30-90 mins. Devulcanizates were then filtered, dried, and evaluated based on the percentage of by means of Flory-Rehner calculation and swelling index. The result shows that an increasing number of α-Hs increases the degree of devulcanization, and the value achieved was around eighty-percent, thirty percent higher than the typical industrial-autoclave method. Resulting bondages of devulcanizates were also analysed by Fourier transform infrared spectrometer (FTIR), Horikx fitting, and thermogravimetric analyser (TGA). The earlier two confirms only sulfidic scissions were experienced by GRT through the treatment, while the latter proves the absence or negligibility of carbon-chains scission.

Keywords: ammonium, sustainable, deep eutectic solvent, α-hydrogen, waste rubber tire

Procedia PDF Downloads 125
1072 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet

Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin

Abstract:

Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.

Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets

Procedia PDF Downloads 390
1071 Human Endogenous Retrovirus Link With Multiple Sclerosis Disease Progression

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human endogenous retrovirus (HERV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on HERV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", "Human endogenous retrovirus", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles chosen, studied, and analyzed. Results: In the leptomeningeal cells of MS patients, a retrovirus-like element associated with reverse transcriptase (RT) activity called multiple sclerosis-associated retroviruses (MSRV) has been identified. HERVs are expressed in the human CNS despite mechanisms to suppress their expression. External factors, especially viral infections such as influenza virus, Epstein-Barr virus, and herpes simplex virus type 1, can activate HERV gene expression. The MSRV coat protein is activated by activating TLR4 at the brain surface, particularly in oligodendroglial progenitor cells and macrophages, leading to immune cascades followed by the downregulation of myelin protein expression. The HERV-K18 envelope gene (env) acts as a superantigen and induces inflammatory responses in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HERV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of endogenous retroviruses may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human endogenous retrovirus, central nervous system, MSRV

Procedia PDF Downloads 69
1070 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones

Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat

Abstract:

In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.

Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.

Procedia PDF Downloads 64
1069 New Biobased(Furanic-Sulfonated) Poly(esteramide)s

Authors: Souhir Abid

Abstract:

The growing interest in vegetal biomass as an alternative for fossil resources has stimulated the development of numerous classes of monomers. Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons (i) firstly environmental concerns, and (ii) secondly the use of monomers from renewable feedstock is a steadily growing field of interest in order to reduce the amount of petroleum consumed in the chemical industry and to open new high-value-added markets to agriculture. Furanic polymers have been considered as alternative environmentally friendly polymers. In our earlier work, modifying furanic polyesters by incorporation of amide functions along their backbone, lead to a particular class of polymer ‘poly(ester-amide)s’, was investigated to combine the excellent mechanical properties of polyamides and the biodegradability of polyesters. As a continuation of our studies on this family of polymer, a series of furanic poly(ester-amide)s bearing sulfonate groups in the main chain were synthesized from 5,5’-Isopropylidene-bis(ethyl 2-furoate), dimethyl 5-sodiosulfoisophthalate, ethylene glycol and hexamethylene diamine by melt polycondensation using zinc acetate as a catalyst. In view of the complexity of the NMR spectrum analysis of the resulting sulfonated poly(ester-amide)s, we found that it is useful to prepare initially the corresponding homopolymers: sulfonated polyesters and polyamides. Structural data of these polymers will be used as a basic element in 1H NMR characterization. The hydrolytic degradation in acidic aqueous conditions (pH = 4,35 ) at 37 °C over the period of four weeks show that the mechanism of the hydrolysis of poly(ester amide)s was elucidated in relation with the microstructure. The strong intermolecular hydrogen bonding interactions between amide functions and water molecules increases the hydrophilicity of the macromolecular chains and consequently their hydrolytic degradation.

Keywords: furan, hydrolytic degradation, polycondensation, poly(ester amide)

Procedia PDF Downloads 293
1068 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli

Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha

Abstract:

Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.

Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus

Procedia PDF Downloads 282
1067 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents

Authors: Uzaira Rafique, Kousar Parveen

Abstract:

The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.

Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic

Procedia PDF Downloads 192
1066 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 80
1065 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 134