Search results for: surface features
5314 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory
Authors: E. K. A. Ogunshile
Abstract:
This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.Keywords: conformance testing, finite state machine, software testing, x-machine
Procedia PDF Downloads 2685313 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications
Authors: Yasith Mindula Saipath Wickramasinghe
Abstract:
Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating
Procedia PDF Downloads 1185312 Dust and Soling Accumulation Effect on Photovoltaic Systems in MENA Region
Authors: I. Muslih, A. Alkhalailah, A. Merdji
Abstract:
Photovoltaic efficiency is highly affected by dust accumulation; the dust particles prevent direct solar radiation from reaching the panel surface; therefore a reduction in output power will occur. A study of dust and soiling accumulation effect on the output power of PV panels was conducted for different periods of time from May to October in three countries of the MENA region, Jordan, Egypt, and Algeria, under local weather conditions. This study leads to build a more realistic equation to estimate the power reduction as a function of time. This logarithmic function shows the high reduction in power in the first days with 10% reduction in output power compared to the reference system, where it reaches a steady state value after 60 days to reach a maximum value of 30%.Keywords: dust effect, MENA, solar energy, PV system
Procedia PDF Downloads 2195311 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2765310 Investigation of Length Effect on Power Conversion Efficiency of Perovskite Solar Cells Composed of ZnO Nanowires
Authors: W. S. Li, S. T. Yang, H. C. Cheng
Abstract:
The power conversion efficiency (PCE) of the perovskite solar cells has been achieved by inserting vertically-aligned ZnO nanowires (NWs) between the cathode and the active layer and shows better solar cells performance. Perovskite solar cells have drawn significant attention due to the superb efficiency and low-cost fabrication process. In this experiment, ZnO nanowires are used as the electron transport layer (ETL) due to its low temperature process. The main idea of this thesis is utilizing the 3D structures of the hydrothermally-grown ZnO nanowires to increase the junction area to improve the photovoltaic performance of the perovskite solar cells. The infiltration and the surface coverage of the perovskite precursor solution changed as tuning the length of the ZnO nanowires. It is revealed that the devices with ZnO nanowires of 150 nm demonstrated the best PCE of 8.46 % under the AM 1.5G illumination (100 mW/cm2).Keywords: hydrothermally-grown ZnO nanowires, perovskite solar cells, low temperature process, pinholes
Procedia PDF Downloads 3295309 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data
Authors: M. Lghoul, N. El Goumi, M. Guernouche
Abstract:
In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.Keywords: magnetic, gravity, structural trend, depth to basement
Procedia PDF Downloads 1325308 Preparation and Characterization of Organic Silver Precursors for Conductive Ink
Authors: Wendong Yang, Changhai Wang, Valeria Arrighi
Abstract:
Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 °C.Keywords: conductive ink, electrical property, film, organic silver
Procedia PDF Downloads 3315307 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 1115306 Face Recognition Using Eigen Faces Algorithm
Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale
Abstract:
Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.Keywords: face detection, face recognition, eigen faces, algorithm
Procedia PDF Downloads 3615305 Understanding Sixteen Basic Desires and Modern Approaches to Agile Team Motivation: Case Study
Authors: Anna Suvorova
Abstract:
Classical motivation theories hold that there are two kinds of motivation, intrinsic and extrinsic. Leaders are looking for effective motivation techniques, but frequently external influences do not work or, even worse, reduce team productivity. We see only the tip of the iceberg -human behavior. However, beneath the surface of the water are factors that directly affect our behavior -desires. Believing that employees need to be motivated, companies design a motivation system based on the principle: do it and get a reward. As a matter of fact, we all have basic desires. Everybody is motivated but to different extents. Following the principle "intrinsic motivation over extrinsic rewards", we need to create an environment that will support intrinsic motivation and potential of employees, and team, rather than individual work.Keywords: motivation profile, motivation techniques, agile HR, basic desires, agile people, human behavior, people management
Procedia PDF Downloads 1145304 Comparison Conventional with Microwave-Assisted Drying Method on the Physicochemical Characteristics of Rice Bran Noodle
Authors: Chien-Chun Huang, Yi-U Chiou, Chiun-C.R. Wang
Abstract:
For longer shelf life of noodles, air-dried method is the traditional way for the noodle preparation. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted air driers and many agricultural products were dried successfully. There are few researches about the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional and microwave-assisted drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no characteristic of noodle was appeared on the surface of noodles preparing by low power (0.5 KW) microwave facility. The optimum cooking time of noodles was decreased as higher power microwave or higher proportion of rice bran was incorporated into noodles preparation. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased, with the increases of rice bran proportion. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and acceptable quality of cooked noodles as compared to conventional dried noodles.Keywords: microwave-assisted drying method, physicochemical characteristics, rice bran noodles, sensory evaluation
Procedia PDF Downloads 4825303 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study
Authors: M. Ramadan, B. Salah
Abstract:
This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.Keywords: lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping
Procedia PDF Downloads 2295302 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties
Authors: Hsyi-En Cheng, Ying-Yi Liou
Abstract:
Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide
Procedia PDF Downloads 2425301 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies
Authors: Lindelwa Mngomezulu, Tonderai Muchenje
Abstract:
Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.Keywords: e-mail security, cyber-attacks, data integrity, authentication
Procedia PDF Downloads 1365300 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter
Authors: B. Kędra, R. Małkowski
Abstract:
This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.Keywords: power converter, Simulink Real-Time, Matlab, load, tap controller
Procedia PDF Downloads 2425299 Oxidation Activity of Platinum-Ruthenium-Tin Ternary Alloy Catalyst on Bio-Alcohol
Authors: An-Ya Lo, Yi-Chen Chung, Yun-Chi Hsu, Chuan-Ming Tseng, Chiu-Yue Lin
Abstract:
In this study, the ternary alloy catalyst Pt20RuxSny (where 20, x, y represent mass fractions of Pt, Ru, and Sn, respectively) was optimized for the preliminary study of bio-ethanol fuel cells (BAFC). The morphology, microstructure, composition, phase-structures, and electrochemical properties of Pt20RuxSny catalyst were examined by SEM, TEM, EDS-mapping, XRD, and potentiostat. The effect of Sn content on electrochemical active surface (EAS) and oxidation activity were discussed. As a result, the additional Sn greatly improves the efficiency of Pt20RuxSny, either x=0 or 10. Through discussing the difference between ethanol and glycol oxidations, the mechanism of tolerance against poisoning has been proved. Overall speaking, the catalytic activity are in the order of Pt20RuxSny > Pt20Rux > Pt20Sny in both ethanol and glycol systems. Finally, Pt20Ru10Sn15 catalyst was successfully applied to demonstrate the feasibility of using bio-alcohol.Keywords: Pt-Sn alloy catalyst, Pt-Ru-Sn alloy catalyst, fuel cell, ethanol, ethylene glycol
Procedia PDF Downloads 4175298 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 1615297 Clicking Based Graphical Password Scheme Resistant to Spyware
Authors: Bandar Alahmadi
Abstract:
The fact that people tend to remember pictures better than texts, motivates researchers to develop graphical passwords as an alternative to textual passwords. Graphical passwords as such were introduced as a possible alternative to traditional text passwords, in which users prove their identity by clicking on pictures rather than typing alphanumerical text. In this paper, we present a scheme for graphical passwords that are resistant to shoulder surfing attacks and spyware attacks. The proposed scheme introduces a clicking technique to chosen images. First, the users choose a set of images, the images are then included in a grid where users can click in the cells around each image, the location of the click and the number of clicks are saved. As a result, the proposed scheme can be safe from shoulder surface and spyware attacks.Keywords: security, password, authentication, attack, applications
Procedia PDF Downloads 1655296 Usage and Benefits of Handheld Devices as Educational Tools in Higher Institutions of Learning in Lagos State, Nigeria
Authors: Abiola A. Sokoya
Abstract:
Handheld devices are now in use as educational tools for learning in most of the higher institutions, because of the features and functions which can be used in an academic environment. This study examined the usage and the benefits of handheld devices as learning tools. A structured questionnaire was used to collect data, while the data collected was analyzed using simple percentage. It was, however, observed that handheld devices offer numerous functions and application for learning, which could improve academic performance of students. Students are now highly interested in using handheld devices for mobile learning apart from making and receiving calls. The researchers recommended that seminars be organized for students on functions of some common handheld devices that can aid learning for academic purposes. It is also recommended that management of each higher institution should make appropriate policies in-line with the usage of handheld technologies to enhance mobile learning. Government should ensure that appropriate policies and regulations are put in place for the importation of high quality handheld devices into the country, Nigeria being a market place for the technologies. By this, using handheld devices for mobile learning will be enhanced.Keywords: handheld devices, educational tools, mobile e- learning, usage, benefits
Procedia PDF Downloads 2295295 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites
Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro
Abstract:
Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers
Procedia PDF Downloads 6205294 Nanoscale Metal-Organic Framework Coated Carbon Nitride Nanosheet for Combination Cancer Therapy
Authors: Rui Chen, Jinfeng Zhang, Chun-Sing Lee
Abstract:
In the past couple of decades, nanoscale metal-organic frameworks (NMOFs) have been highlighted as promising delivery platforms for biomedical applications, which combine many potent features such as high loading capacity, progressive biodegradability and low cytotoxicity. While NMOF has been extensively used as carriers for drugs of different modalities, so far there is no report on exploiting the advantages of NMOF for combination therapy. Herein, we prepared core-shell nanoparticles, where each nanoparticle contains a single graphitic-phase carbon nitride (g-C3N4) nanosheet encapsulated by a zeolitic-imidazolate frameworks-8 (ZIF-8) shell. The g-C3N4 nanosheets are effective visible-light photosensitizer for photodynamic therapy (PDT). When hosting DOX (doxorubicin), the as-synthesized core-shell nanoparticles could realize combinational photo-chemo therapy and provide dual-color fluorescence imaging. Therefore, we expect NMOFs-based core-shell nanoparticles could provide a new way to achieve much-enhanced cancer therapy.Keywords: carbon nitride, combination therapy, drug delivery, nanoscale metal-organic frameworks
Procedia PDF Downloads 4255293 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 685292 Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions
Authors: Abdullah Khan, Per Redelius, Nicole Kringos
Abstract:
The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation.Keywords: bitumen emulsions, breaking and coalescence, cold mix asphalt, emulsifiers, relaxation, salts
Procedia PDF Downloads 3385291 Sustainability in the Purchase of Airline Tickets: Analysis of Digital Communication from the Perspective of Neuroscience
Authors: Rodríguez Sánchez Carla, Sancho-Esper Franco, Guillen-Davo Marina
Abstract:
Tourism is one of the most important sectors worldwide since it is an important economic engine for today's society. It is also one of the sectors that most negatively affect the environment in terms of CO₂ emissions due to this expansion. In light of this, airlines are developing Voluntary Carbon Offset (VCO). There is important evidence focused on analyzing the features of these VCO programs and their efficacy in reducing CO₂ emissions, and findings are mixed without a clear consensus. Different research approaches have centered on analyzing factors and consequences of VCO programs, such as economic modelling based on panel data, survey research based on traveler responses or experimental research analyzing customer decisions in a simulated context. This study belongs to the latter group because it tries to understand how different characteristics of an online ticket purchase website affect the willingness of a traveler to choose a sustainable one. The proposed behavioral model is based on several theories, such as the nudge theory, the dual processing ELM and the cognitive dissonance theory. This randomized experiment aims at overcoming previous studies based on self-reported measures that mainly study sustainable behavioral intention rather than actual decision-making. It also complements traditional self-reported independent variables by gathering objective information from an eye-tracking device. This experiment analyzes the influence of two characteristics of the online purchase website: i) the type of information regarding flight CO₂ emissions (quantitative vs. qualitative) and the comparison framework related to the sustainable purchase decision (negative: alternative with more emissions than the average flight of the route vs. positive: alternative with less emissions than the average flight of the route), therefore it is a 2x2 experiment with four alternative scenarios. A pretest was run before the actual experiment to refine the experiment features and to check the manipulations. Afterward, a different sample of students answered the pre-test questionnaire aimed at recruiting the cases and measuring several pre-stimulus measures. One week later, students came to the neurolab at the University setting to be part of the experiment, made their decision regarding online purchases and answered the post-test survey. A final sample of 21 students was gathered. The committee of ethics of the institution approved the experiment. The results show that qualitative information generates more sustainable decisions (less contaminant alternative) than quantitative information. Moreover, evidence shows that subjects are more willing to choose the sustainable decision to be more ecological (comparison of the average with the less contaminant alternative) rather than to be less contaminant (comparison of the average with the more contaminant alternative). There are also interesting differences in the information processing variables from the eye tracker. Both the total time to make the choice and the specific times by area of interest (AOI) differ depending on the assigned scenario. These results allow for a better understanding of the factors that condition the decision of a traveler to be part of a VCO program and provide useful information for airline managers to promote these programs to reduce environmental impact.Keywords: voluntary carbon offset, airline, online purchase, carbon emission, sustainability, randomized experiment
Procedia PDF Downloads 735290 Evaluation of Wound Healing Activity of Phlomis bovei De Noe in Wistar Albino Rats
Authors: W. Khitri, J. Zenaki, A. Abi, N. Lachgueur, A. Lardjem
Abstract:
Healing is a biological phenomenon that is automatically and immediately implemented by the body that is able to repair the physical damage of all tissues except nerve cells. Lot of medicinal plants is used for the treatment of a wound. Our ethnobotanical study has identified 19 species and 13 families of plants used in traditional medicine in Oran-Algeria for their healing activities. The Phlomis bovei De Noe was the species most recommended by herbalists. Its phytochemical study revealed different secondary metabolites such as terpenes, tannins, saponins and mucilage. The evaluation of the healing activity of Phlomis bovei in wistar albinos rats by excision wound model showed a significant amelioration with 5 % increase of the surface healing compared to the control group and a gain of three days of epithelialization time with a scar histologically better.Keywords: Phlomis Bovei De Noe, ethnobanical study, wound healing, wistar albino rats
Procedia PDF Downloads 4465289 Complications of Contact Lens-Associated Keratitis: A Refresher for Emergency Departments
Abstract:
Microbial keratitis is a serious complication of contact lens wear that can be vision and eye-threatening. Diverse presentations relating to contact lens wear include dry corneal surface, corneal infiltrate, ulceration, scarring, and complete corneal melt leading to perforation. Contact lens wear is a major risk factor and, as such, is an important consideration in any patient presenting with a red eye in the primary care setting. This paper aims to provide an overview of the risk factors, common organisms, and spectrum of contact lens-associated keratitis (CLAK) complications. It will highlight some of the salient points relevant to the assessment and workup of patients suspected of CLAK in the emergency department based on the recent literature and therapeutic guidelines. An overview of the management principles will also be provided.Keywords: microbial keratitis, corneal pathology, contact lens-associated complications, painful vision loss
Procedia PDF Downloads 1105288 Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing
Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh
Abstract:
This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities as well as the of fibrils. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.Keywords: hydrolytic ageing, moisture membrane, water vapor permeability, morphology
Procedia PDF Downloads 3155287 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali
Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan
Abstract:
Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.Keywords: land use/cover, urban, Bali, ASTER
Procedia PDF Downloads 5415286 Acute Superior Mesenteric Artery Thrombosis Leading to Pneumatosis Intestinalis and Portal Venous Gas in a Young Adult after COVID-19 Vaccination
Authors: Prakash Dhakal
Abstract:
Hepatic portal venous gas (HPVG) is diagnosed via computed tomography due to unusual imaging features. HPVG, when linked with pneumatosis intestinalis, has a high mortality rate and requires urgent intervention. We present a case of a 26-year-old young adult with superior mesenteric artery thrombosis who presented with severe abdominal pain. He had a history of COVID vaccination (First dose of COVISHILED) 15 days back. On imaging, HPVG and pneumatosis intestinalis were seen owing to the urgent intervention of the patient. The reliable interpretation of the imaging findings along with quick intervention led to a favorable outcome in our case. Herein we present a thorough review of the patient with a history of COVID-19 vaccination with superior mesenteric artery thrombosis leading to bowel ischemia and hepatic portal venous gas. The patient underwent subtotal small bowel resection.Keywords: COVID-19 vaccination, SMA thrombosis, portal venoius gas, pneumatosis intestinalis
Procedia PDF Downloads 905285 PostureCheck with the Kinect and Proficio: Posture Modeling for Exercise Assessment
Authors: Elham Saraee, Saurabh Singh, Margrit Betke
Abstract:
Evaluation of a person’s posture while exercising is important in physical therapy. During a therapy session, a physical therapist or a monitoring system must assure that the person is performing an exercise correctly to achieve the desired therapeutic effect. In this work, we introduce a system called POSTURECHECK for exercise assessment in physical therapy. POSTURECHECK assesses the posture of a person who is exercising with the Proficio robotic arm while being recorded by the Microsoft Kinect interface. POSTURECHECK extracts unique features from the person’s upper body during the exercise, and classifies the sequence of postures as correct or incorrect using Bayesian estimation and majority voting. If POSTURECHECK recognizes an incorrect posture, it specifies what the user can do to correct it. The result of our experiment shows that POSTURECHECK is capable of recognizing the incorrect postures in real time while the user is performing an exercise.Keywords: Bayesian estimation, majority voting, Microsoft Kinect, PostureCheck, Proficio robotic arm, upper body physical therapy
Procedia PDF Downloads 284