Search results for: reducing waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5924

Search results for: reducing waste

1124 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 111
1123 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine

Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.

Keywords: diesel fuel, CFD, evaporation, multiphase

Procedia PDF Downloads 336
1122 Phenolic Rich Dry Extracts and Their Antioxidant Activity

Authors: R. Raudonis, L. Raudonė, V. Janulis, P. Viškelis

Abstract:

Pharmacological and clinical studies demonstrated that phenolic compounds particularly flavonoids and phenolic acids are responsible for a wide spectrum of therapeutic activities. Flavonoids and phenolic acids are regarded as natural antioxidants that play an important role in protecting cells from oxidative stress. Qualitatively prepared dry extracts possess high stability and concentration of bio active compounds, facility of standardization and quality control. The aim of this work was to determine the phenolic and antioxidant profiles of Hippophaë rhamnoides L., Betula pendula Roth., Tilia cordata Mill., Sorbus aucuparia L. leaves dry extracts and to identify markers of antioxidant activity. Extracts were analyzed using high-performance liquid chromatography (HPLC) with FRAP post-column assay. Dry extracts are versatile forms possessing wide area of applications, final product ensure consistent phytochemical and functional properties. Seven flavonoids: rutin, hyperoside, isorhamnetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin, kaempferol, isorhamnetin were identified in dry extract of Hippophaë rhamnoides L. leaves. Predominant compounds were flavonol glycosides which were chosen as markers for quantitative control of dry extracts. Chlorogenic acid, hyperoside, rutin, quercetin, isorhamnetin were prevailing compounds in Betula pendula Roth. leaves extract, whereas strongest ferric reducing activity was determined for chlorogenic acid and hyperoside. Notable amounts of protocatechuic acid and flavonol glycosides, rutin, hyperoside, quercitrin, isoquercitrin were identified in the chromatographic profile of Tilia cordata Mill. Neochlorogenic and chlorogenic acids were significantly dominant compounds in antioxidant profile in dry extract of Sorbus aucuparia L. leaves. Predominant compounds of antioxidant profiles could be proposed as functional markers of quality of phenolic rich raw materials. Dry extracts could be further used for manufacturing of pharmaceutical and nutraceuticals.

Keywords: dry extract, FRAP, antioxidant activity, phenolic

Procedia PDF Downloads 496
1121 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 424
1120 Drug and Poison Information Centers: An Emergent Need of Health Care Professionals in Pakistan

Authors: Asif Khaliq, Sayeeda A. Sayed

Abstract:

The drug information centers provide drug related information to the requesters that include physicians, pharmacist, nurses and other allied health care professionals. The International Pharmacist Federation (FIP) describes basic functions of a drug and poison information centers as drug evaluation, therapeutic counseling, pharmaceutical advice, research, pharmaco-vigilence and toxicology. Continuous advancement in the field of medicine has expanded the medical literature, which has increased demand of a drug and poison information center for the guidance, support and facilitation of physicians. The objective of the study is to determine the need of drug and poison information centers in public and private hospitals of Karachi, Pakistan. A cross sectional study was conducted during July 2013 to April 2014 using a self-administered, multi-itemed questionnaire. Non Probability Convenient sampling was used to select the study participants. A total of 307 physicians from public and private hospitals of Karachi participated in the study. The need for 24/7 Drug and poison information center was highlighted by 92 % of physicians and 67% physicians suggested opening a drug information center at the hospital. It was reported that 70% physicians take at least 15 minutes for searching the information about the drug while managing a case. Regarding the poisoning case management, 52% physicians complaint about the unavailability of medicines in hospitals; and mentioned the importance of medicines for safe and timely management of patients. Although 73% physicians attended continued medical education (CME) sessions, 92 % physicians insisted on the need of 24/7 Drug and poison information center. The scarcity of organized channel for obtaining the information about drug and poisons is one of the most crucial problems for healthcare workers in Pakistan. The drug and poison information center is an advisory body that assists health care professional and patients in provision of appropriate drug and hazardous substance information. Drug and poison information center is one of the integral needs for running an effective health care system. Provision of a 24 /7 drug information centers with specialized staff offer multiple benefits to the hospitals while reducing treatment delays, addressing awareness gaps of all stakeholders and ensuring provision of quality health care.

Keywords: drug and poison information centers, Pakistan, physicians, public and private hospitals

Procedia PDF Downloads 323
1119 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters

Authors: Sergejs Kolesovs, Pavels Semjonovs

Abstract:

Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.

Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants

Procedia PDF Downloads 86
1118 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.

Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity

Procedia PDF Downloads 532
1117 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 191
1116 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells

Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel

Abstract:

Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.

Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.

Procedia PDF Downloads 128
1115 Determining Components of Deflection of the Vertical in Owerri West Local Government, Imo State Nigeria Using Least Square Method

Authors: Chukwu Fidelis Ndubuisi, Madufor Michael Ozims, Asogwa Vivian Ndidiamaka, Egenamba Juliet Ngozi, Okonkwo Stephen C., Kamah Chukwudi David

Abstract:

Deflection of the vertical is a quantity used in reducing geodetic measurements related to geoidal networks to the ellipsoidal plane; and it is essential in Geoid modeling processes. Computing the deflection of the vertical component of a point in a given area is necessary in evaluating the standard errors along north-south and east-west direction. Using combined approach for the determination of deflection of the vertical component provides improved result but labor intensive without appropriate method. Least square method is a method that makes use of redundant observation in modeling a given sets of problem that obeys certain geometric condition. This research work is aimed to computing the deflection of vertical component of Owerri West local government area of Imo State using geometric method as field technique. In this method combination of Global Positioning System on static mode and precise leveling observation were utilized in determination of geodetic coordinate of points established within the study area by GPS observation and the orthometric heights through precise leveling. By least square using Matlab programme; the estimated deflections of vertical component parameters for the common station were -0.0286 and -0.0001 arc seconds for the north-south and east-west components respectively. The associated standard errors of the processed vectors of the network were computed. The computed standard errors of the North-south and East-west components were 5.5911e-005 and 1.4965e-004 arc seconds, respectively. Therefore, including the derived component of deflection of the vertical to the ellipsoidal model will yield high observational accuracy since an ellipsoidal model is not tenable due to its far observational error in the determination of high quality job. It is important to include the determined deflection of the vertical component for Owerri West Local Government in Imo State, Nigeria.

Keywords: deflection of vertical, ellipsoidal height, least square, orthometric height

Procedia PDF Downloads 200
1114 Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field

Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin

Abstract:

The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.

Keywords: rice field rat, Rattus argentiventer, fence, rice

Procedia PDF Downloads 30
1113 Environmental Justice and Citizenship Rights in the Tehran Health Plan

Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Davood Nourmohammadi

Abstract:

Environmental degradation is caused by social inequalities and the inappropriate use of nature and a factor in the violation of human rights. Indeed, the right to a safe, healthy and ecologically-balanced environment is an independent human right. Therefore, the relationship between human rights and environmental protection is crucial for the study of social justice and sustainable development, and environmental problems are a result of the failure to realize social and economic justice. In this regard, 'article 50 of the constitution of the Islamic Republic of Iran as a general principle have many of the concepts of sustainable development, including: the growth and improvement of human life, the rights of present and future generations, and the integrity of the inner and outer generation, the prohibition of any environmental degradation'. Also, Charter on Citizen’s Rights, which was conveyed by the President of the Islamic Republic of Iran, Mr. Rouhani refers to the right to a healthy environment and sustainable development. In this regard in 2013, Tehran Province Water and Wastewater Co. defined a plan called 'Tehran’s Health Line' was includes Western and Eastern part by about 26 kilometers of water transferring pipelines varied 1000 to 2000 mm diameters. This project aims to: (1) Transfer water from the northwest water treatment plant to the southwest areas, which suffer from qualitative and quantitative water, in order to mix with the improper wells’ water; (2) Reducing the water consumption provided by harvesting from wells which results in improving the underground water resources, causing the large settlements and stopping the immigrating slums into the center or north side of the city. All of the financial resources accounted for 53,000,000 US$ which is mobilized by Tehran Province Water and Wastewater Co. to expedite the work. The present study examines the Tehran Health Line plan and the purpose of implementation of this plan to achieve environmental protection, environmental justice and citizenship rights for all people who live in Tehran.

Keywords: environmental justice, international environmental law, erga omnes, charter on citizen's rights, Tehran health line

Procedia PDF Downloads 267
1112 Accelerator Mass Spectrometry Analysis of Isotopes of Plutonium in PM₂.₅

Authors: C. G. Mendez-Garcia, E. T. Romero-Guzman, H. Hernandez-Mendoza, C. Solis, E. Chavez-Lomeli, E. Chamizo, R. Garcia-Tenorio

Abstract:

Plutonium is present in different concentrations in the environment and biological samples related to nuclear weapons testing, nuclear waste recycling and accidental discharges of nuclear plants. This radioisotope is considered the most radiotoxic substance, particularly when it enters the human body through inhalation of powders insoluble or aerosols. This is the main reason of the determination of the concentration of this radioisotope in the atmosphere. Besides that, the isotopic ratio of ²⁴⁰Pu/²³⁹Pu provides information about the origin of the source. PM₂.₅ sampling was carried out in the Metropolitan Zone of the Valley of Mexico (MZVM) from February 18th to March 17th in 2015 on quartz filter. There have been significant developments recently due to the establishment of new methods for sample preparation and accurate measurement to detect ultra trace levels as the plutonium is found in the environment. The accelerator mass spectrometry (AMS) is a technique that allows measuring levels of detection around of femtograms (10-15 g). The AMS determinations include the chemical isolation of Pu. The Pu separation involved an acidic digestion and a radiochemical purification using an anion exchange resin. Finally, the source is prepared, when Pu is pressed in the corresponding cathodes. According to the author's knowledge on these aerosols showed variations on the ²³⁵U/²³⁸U ratio of the natural value, suggesting that could be an anthropogenic source altering it. The determination of the concentration of the isotopes of Pu can be a useful tool in order the clarify this presence in the atmosphere. The first results showed a mean value of activity concentration of ²³⁹Pu of 280 nBq m⁻³ thus the ²⁴⁰Pu/²³⁹Pu was 0.025 corresponding to the weapon production source; these results corroborate that there is an anthropogenic influence that is increasing the concentration of radioactive material in PM₂.₅. According to the author's knowledge in Total Suspended Particles (TSP) have been reported activity concentrations of ²³⁹⁺²⁴⁰Pu around few tens of nBq m⁻³ and 0.17 of ²⁴⁰Pu/²³⁹Pu ratios. The preliminary results in MZVM show high activity concentrations of isotopes of Pu (40 and 700 nBq m⁻³) and low ²⁴⁰Pu/²³⁹Pu ratio than reported. These results are in the order of the activity concentrations of Pu in weapons-grade of high purity.

Keywords: aerosols, fallout, mass spectrometry, radiochemistry, tracer, ²⁴⁰Pu/²³⁹Pu ratio

Procedia PDF Downloads 160
1111 A Multidimensional Indicator-Based Framework to Assess the Sustainability of Productive Green Roofs: A Case Study in Madrid

Authors: Francesca Maria Melucci, Marco Panettieri, Rocco Roma

Abstract:

Cities are at the forefront of achieving the sustainable development goals set out in the Sustainable Development Goals of Agenda 2030. For these reasons, increasing attention has been given to the creation of resilient, sustainable, inclusive and green cities and finding solutions to these problems is one of the greatest challenges faced by researchers today. In particular urban green infrastructures, including green roofs, play a key role in tackling environmental, social and economic problems. The starting point was an extensive literature review on 1. research developments on the benefits (environmental, economic and social) and implications of green roofs; 2. sustainability assessment and applied methodologies; 3. specific indicators to measure impacts on urban sustainability. Through this review, the appropriate qualitative and quantitative characteristics that are part of the complex 'green roof' system were identified, as studies that holistically capture its multifunctional nature are still lacking. So, this paper aims to find a method to improve community participation in green roof initiatives and support local governance processes in developing efficient proposals to achieve better sustainability and resilience of cities. To this aim, the multidimensional indicator-based framework, presented by Tapia in 2021, has been tested for the first time in the case of a green roof in the city of Madrid. The framework's set of indicators was implemented with other indicators such as those of waste management and circularity (OECD Inventory of Circular Economy indicators) and sustainability performance. The specific indicators to be used in the case study were decided after a consultation phase with relevant stakeholders. Data on the community's willingness to participate in green roof implementation initiatives were collected through interviews and online surveys with a heterogeneous sample of citizens. The results of the application of the framework suggest how the different aspects of sustainability influence the choice of a green roof and provide input on the main mechanisms involved in citizens' willingness to participate in such initiatives.

Keywords: urban agriculture, green roof, urban sustainability, indicators, multi-criteria analysis

Procedia PDF Downloads 70
1110 Managing Work–Family Conflict in Today's Nursing Profession: The Role of Supervisors

Authors: Alshutwi Sitah

Abstract:

Many countries around the world are struggling to maintain an adequate number of nurses. Inadequate nursing staffing could compromise the quality of patient care. Among many factors that contribute to registered nurses (RN) turnover, the influence of work–family conflict (WFC) has gained little attention. WFC was found to be significantly associated with increased turnover intention (TI) among employees. Furthermore, WFC has been linked to a number of negative consequences, including lower job satisfaction and organizational commitment, sleep insufficiency, insomnia symptoms, obesity, cardiovascular diseases, sleep insufficiency, and high cholesterol. In an effort to find strategies to manage the consequences of WFC, many behavioral, psychological, and career scholars have focused on the role of supervisor support. Family Supportive Supervisor Behaviors (FSSB) has been found to be a promising approach contributing to the reduction of TI in employees’ experiencing WFC. Despite the importance of work–family issues and the influence of FSSB, limited studies have been conducted among the nursing population and none were found that included a sample from Saudi Arabia. Therefore, the main Purpose of this study was to evaluate the influence of FSSB on the relationship among WFC, Stress, and TI in Saudi Arabian registered nurses. Method: A cross-sectional study. Sample: Convenience sampling; 113 Saudi female nurse. Result: Fifty percent of nurses intended to leave their workplace, 68 % of nurses reported having a conflict between work and family, and 44% reported having a high level of stress. A significant positive correlation was found between WFC and TI (r= .43, P < 0.01). A negative correlation was found between FSSB and TI (r= -.53, P < 0.01). Both WFC and stress were associated with TI; however, these associations were buffered (weaken), when nurses had higher FSSB. Conclusion: The FSSB could be seen as a tool to help married, female nurses to demonstrate their professional role without compromising their family responsibilities. Nurses’ turnover is a complex issue that may require multiple prevention strategies; however, enhancing FSSB could be a key resource for maintaining a positive workplace environment and reducing TI.

Keywords: turnover intention, work-family conflict, supervisor support, nursing retention

Procedia PDF Downloads 220
1109 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 88
1108 Physical Planning Trajectories for Disaster Mitigation and Preparedness in Costal and Seismic Regions: Capital Region of Andhra Pradesh, Vijayawada in India

Authors: Timma Reddy, Srikonda Ramesh

Abstract:

India has been traditionally vulnerable to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides. It has become a recurrent phenomenon as observed in last five decades. The survey indicates that about 60% of the landmass is prone to earthquakes of various intensities; over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is susceptible to drought. Climate change is likely to be perceived through experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc, hence it is essential and crucial to strengthening our settlements to respond to such calamities. So, the research paper focus is to analyze the effective planning strategy/mechanism to integrate disaster mitigation measures in coastal regions in general and Capital Region of Andhra Pradesh in particular. The basic hypothesis is to govern the appropriate special planning considerations would facilitate to have organized way of protective life and properties from natural disasters. And further to integrate the infrastructure planning with conscious direction would provide an effective mitigations measures. It has been planned and analyzed to Vijayawada city with conscious land use planning with reference to space syntax trajectory in accordance to required social infrastructure such as health facilities, institution areas and recreational and other open spaces. It has been identified that the geographically ideal location with reference to the population densities based on GIS tools the properness strategies can be effectively integrated to protect the life and to save the properties by means of reducing the damage/impact of natural disasters in general earth quake/cyclones or floods in particularly.

Keywords: modular, trajectories, social infrastructure, evidence based syntax, drills and equipments, GIS, geographical micro zoning, high resolution satellite image

Procedia PDF Downloads 212
1107 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite

Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona

Abstract:

The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.

Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity

Procedia PDF Downloads 120
1106 Influence of Strengthening of Hip Abductors and External Rotators in Treatment of Patellofemoral Pain Syndrome

Authors: Karima Abdel Aty Hassan Mohamed, Manal Mohamed Ismail, Mona Hassan Gamal Eldein, Ahmed Hassan Hussein, Abdel Aziz Mohamed Elsingerg

Abstract:

Background: Patellofemoral pain (PFP) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor, yet the relationships between pain, hip muscle strength and function are not known. Objective: The purpose of this study is to investigate the effects of strengthening hip abductors and lateral rotators on pain intensity, function and hip abductor and hip lateral rotator eccentric and concentric torques in patients with PFPS. Methods: Thirty patients had participated in this study; they were assigned into two experimental groups. With age ranged for eighty to thirty five years. Group A consisted of 15 patients (11females and 4 males) with mean age 20.8 (±2.73) years, received closed kinetic chain exercises program, stretching exercises for tight lower extremity soft tissues, and hip strengthening exercises .Group B consisted of 15 patients (12 females and 3 males) with mean age 21.2(±3.27) years, received closed kinetic chain exercises program and stretching exercises for tight lower extremity soft tissues. Treatment was given 2-3times/week, for 6 weeks. Patients were evaluated pre and post treatment for their pain severity, function of knee joint, hip abductors and external rotators concentric/eccentric peak torque. Result: the results revealed that there were significant differences in pain and function between both groups, while there was improvement for all values for both group. Conclusion: Six weeks rehabilitation program focusing on knee strengthening exercises either supplemented by hip strengthening exercises or not effective in improving function, reducing pain and improving hip muscles torque in patients with PFPS. However, adding hip abduction and lateral rotation strengthening exercises seem to reduce pain and improve function more efficiently.

Keywords: patellofemoral pain syndrome, hip muscles, rehabilitation, isokinetic

Procedia PDF Downloads 435
1105 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates

Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić

Abstract:

Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.

Keywords: cherry pomace, microencapsulation, polyphenols, storage

Procedia PDF Downloads 362
1104 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity

Procedia PDF Downloads 277
1103 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development

Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi

Abstract:

The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.

Keywords: renewable energies, decision aided tool, environment, simulation

Procedia PDF Downloads 453
1102 Comparison with Two Clinical Cases of Plasma Cell Neoplasm by Using the Method of Capillary Electrophoresis

Authors: Kai Pai Huang

Abstract:

Background: There are several types of plasma cell neoplasms including multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are found in our lab. Today, we want to compare with two cases using the method of capillary electrophoresis. Method: Serum is prepared and electrophoresis is performed at alkaline PH in a capillary using the Sebia® Capillary 2. Albumin and globulins are detected by the detector which is located in the cathode of the capillary and the signals are transformed to peaks. Serum was treated with beta-mercaptoethanol which reducing the polymerized immunoglobulin to monomer immunoglobulin to clarify two M-protein are secreted from the same plasma cell clone in bone marrow. Result: Case 1: A 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria, leukocytosis, results of high serum IgA and lambda light chain. A renal biopsy found amyloid fibrils in the glomerular mesangial area. Serum protein electrophoresis shows a major monoclonal peak in the β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. Case 2: A 55-year-old male presenting abdominal distension and low back pain for more than one month. Laboratory data showed T12 T8 compression fracture, results of high serum IgM and kappa light chain. Bone marrow aspiration showed the cells from the bone marrow are B cells with monotypic kappa chain expression. Bone marrow biopsy found this is lymphoplasmacytic lymphoma (Waldenstrom macroglobulin). Serum protein electrophoresis shows a monoclonal peak in the β region and the immunotyping studies for serum showed IgM/κ type. Conclusion: Plasma cell neoplasm can be diagnosed by many examinations. Among them, using capillary electrophoresis by a lab can separate several types of gammopathy and the quantification of a monoclonal peak can be used to evaluate the patients’ prognosis or treatment.

Keywords: plasma cell neoplasm, capillary electrophoresis, serum protein electrophoresis, immunotyping

Procedia PDF Downloads 140
1101 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 176
1100 'Coping with Workplace Violence' Workshop: A Commendable Addition to the Curriculum for BA in Nursing

Authors: Ilana Margalith, Adaya Meirowitz, Sigalit Cohavi

Abstract:

Violence against health professionals by patients and their families have recently become a disturbing phenomenon worldwide, exacting psychological as well as economic tolls. Health workplaces in Israel (e.g. hospitals and H.M.O clinics) provide workshops for their employees, supplying them with coping strategies. However, these workshops do not focus on nursing students, who are also subjected to this violence. Their learning environment is no longer as protective as it used to be. Furthermore, coping with violence was not part of the curriculum for Israeli nursing students. Thus, based on human aggression theories which depict the pivotal role of the professional's correct response in preventing the onset of an aggressive response or the escalation of violence, a workshop was developed for undergraduate nursing students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel. The workshop aimed at reducing students' anxiety vis a vis the aggressive patient or family in addition to strengthening their ability to cope with such situations. The students practiced interpersonal skills, especially relevant to early detection of potential violence, as well as ‘a correct response’ reaction to the violence, thus developing the necessary steps to be implemented when encountering violence in the workplace. In order to assess the efficiency of the workshop, the participants filled out a questionnaire comprising knowledge and self-efficacy scales. Moreover, the replies of the 23 participants in this workshop were compared with those of 24 students who attended a standard course on interpersonal communication. Students' self-efficacy and knowledge were measured in both groups before and after the course. A statistically significant interaction was found between group (workshop/standard course) and time (before/after) as to the influence on students' self-efficacy (p=0.004) and knowledge (p=0.007). Nursing students, who participated in this ‘coping with workplace violence’ workshop, gained knowledge, confidence and a sense of self-efficacy with regard to workplace violence. Early detection of signs of imminent violence amongst patients or families and the prevention of its escalation, as well as the ability to manage the threatening situation when occurring, are acquired skills. Encouraging nursing students to learn and practice these skills may enhance their ability to cope with these unfortunate occurrences.

Keywords: early detection of violence, nursing students, patient aggression, self-efficacy, workplace violence

Procedia PDF Downloads 132
1099 The Role of Evaluation for Effective and Efficient Change in Higher Education Institutions

Authors: Pattaka Sa-Ngimnet

Abstract:

That the University as we have known it is no longer serving the needs of the vast majority of students and potential students has been a topic of much discussion. Institutions of higher education, in this age of global culture, are in a process of metamorphosis. Technology is being used to allow more students, older students, working students and disabled students, who cannot attend conventional classes, to have greater access to higher education through the internet. But change must come about only after much evaluation and experimentation or education will simply become a commodity as, in some cases, it already has. This paper will be concerned with the meaning and methods of change and evaluation as they are applied to institutions of higher education. Organization’s generally have different goals and different approaches in order to be successful. However, the means of reaching those goals requires rational and effective planning. Any plans for successful change in any institution must take into account both effectiveness and efficiency and the differences between them. “Effectiveness” refers to an adequate means of achieving an objective. “Efficiency” refers to the ability to achieve an objective without waste of time or resources (The Free Dictionary). So an effective means may not be efficient and an efficient means may not be effective. The goal is to reach a synthesis of effectiveness and efficiency that will maximize both to the extent each is limited by the other. This focus of this paper then is to determine how an educational institution can become either successful or oppressive depending on the kinds of planning, evaluating and changes that operate by and on the administration. If the plan is concerned only with efficiency, the institution can easily become oppressive and lose sight of its purpose of educating students. If it is overly concentrated on effectiveness, the students may receive a superior education in the short run but the institution will face operating difficulties. In becoming only goal oriented, institutions also face problems. Simply stated, if the institution reaches its goals, the stake holders may become satisfied and fail to change and keep up with the needs of the times. So goals should be seen only as benchmarks in a process of becoming even better in providing quality education. Constant and consistent evaluation is the key to making all these factors come together in a successful process of planning, testing and changing the plans as needed. The focus of the evaluation has to be considered. Evaluations must take into account progress and needs of students, methods and skills of instructors, resources available from the institution and the styles and objectives of administrators. Thus the role of evaluation is pivotal in providing for the maximum of both effective and efficient change in higher education institutions.

Keywords: change, effectiveness, efficiency, education

Procedia PDF Downloads 313
1098 Understanding the Processwise Entropy Framework in a Heat-powered Cooling Cycle

Authors: P. R. Chauhan, S. K. Tyagi

Abstract:

Adsorption refrigeration technology offers a sustainable and energy-efficient cooling alternative over traditional refrigeration technologies for meeting the fast-growing cooling demands. With its ability to utilize natural refrigerants, low-grade heat sources, and modular configurations, it has the potential to revolutionize the cooling industry. Despite these benefits, the commercial viability of this technology is hampered by several fundamental limiting constraints, including its large size, low uptake capacity, and poor performance as a result of deficient heat and mass transfer characteristics. The primary cause of adequate heat and mass transfer characteristics and magnitude of exergy loss in various real processes of adsorption cooling system can be assessed by the entropy generation rate analysis, i. e. Second law of Thermodynamics. Therefore, this article presents the second law of thermodynamic-based investigation in terms of entropy generation rate (EGR) to identify the energy losses in various processes of the HPCC-based adsorption system using MATLAB R2021b software. The adsorption technology-based cooling system consists of two beds made up of silica gel and arranged in a single stage, while the water is employed as a refrigerant, coolant, and hot fluid. The variation in process-wise EGR is examined corresponding to cycle time, and a comparative analysis is also presented. Moreover, the EGR is also evaluated in the external units, such as the heat source and heat sink unit used for regeneration and heat dump, respectively. The research findings revealed that the combination of adsorber and desorber, which operates across heat reservoirs with a higher temperature gradient, shares more than half of the total amount of EGR. Moreover, the EGR caused by the heat transfer process is determined to be the highest, followed by a heat sink, heat source, and mass transfer, respectively. in case of heat transfer process, the operation of the valve is determined to be responsible for more than half (54.9%) of the overall EGR during the heat transfer. However, the combined contribution of the external units, such as the source (18.03%) and sink (21.55%), to the total EGR, is 35.59%. The analysis and findings of the present research are expected to pinpoint the source of the energy waste in HPCC based adsorption cooling systems.

Keywords: adsorption cooling cycle, heat transfer, mass transfer, entropy generation, silica gel-water

Procedia PDF Downloads 103
1097 Impact of Foreign Aid on Economic Development

Authors: Saeed Anwar

Abstract:

Foreign aid has long been a prominent tool in the pursuit of economic development in recipient countries. This research paper aims to analyze the impact of foreign aid on economic development and explore the effectiveness of aid in promoting sustainable growth, poverty reduction, and improvements in human development indicators. Drawing upon a comprehensive review of existing literature, both theoretical frameworks and empirical evidence are synthesized to provide insights into the complex relationship between foreign aid and economic development. The paper examines various channels through which foreign aid influences economic development, including infrastructure development, education and healthcare investments, technology transfer, and institutional capacity building. It explores the potential positive effects of aid in stimulating economic growth, reducing poverty, and enhancing human capital formation. Additionally, it investigates the potential challenges and limitations associated with aid, such as aid dependency, governance issues, and the potential crowding out of domestic resources. Furthermore, the study assesses the heterogeneity of aid effectiveness across different types of aid modalities, recipient country characteristics, and aid allocation mechanisms. It considers the role of aid conditionality, aid fragmentation, and aid targeting in influencing the effectiveness of aid in promoting economic development. The findings of this research contribute to the ongoing discourse on foreign aid and economic development by providing a comprehensive analysis of the existing literature. The study highlights the importance of context-specific factors, recipient country policies, and aid effectiveness frameworks in determining the impact of foreign aid on economic development outcomes. The insights derived from this research can inform policymakers, donor agencies, and practitioners in designing and implementing effective aid strategies to maximize the positive impact of foreign aid on economic development.

Keywords: foreign aid, economic development, sustainable growth, poverty reduction, human development indicators, infrastructure development, education, healthcare, technology transfer, institutional capacity building, aid effectiveness, aid dependency, governance, crowding out, aid conditionality, aid fragmentation, aid targeting, recipient country policies, aid strategies, donor agencies, policymaking

Procedia PDF Downloads 56
1096 Developing a SOA-Based E-Healthcare Systems

Authors: Hend Albassam, Nouf Alrumaih

Abstract:

Nowadays we are in the age of technologies and communication and there is no doubt that technologies such as the Internet can offer many advantages for many business fields, and the health field is no execution. In fact, using the Internet provide us with a new path to improve the quality of health care throughout the world. The e-healthcare offers many advantages such as: efficiency by reducing the cost and avoiding duplicate diagnostics, empowerment of patients by enabling them to access their medical records, enhancing the quality of healthcare and enabling information exchange and communication between healthcare organizations. There are many problems that result from using papers as a way of communication, for example, paper-based prescriptions. Usually, the doctor writes a prescription and gives it to the patient who in turn carries it to the pharmacy. After that, the pharmacist takes the prescription to fill it and give it to the patient. Sometimes the pharmacist might find difficulty in reading the doctor’s handwriting; the patient could change and counterfeit the prescription. These existing problems and many others heighten the need to improve the quality of the healthcare. This project is set out to develop a distributed e-healthcare system that offers some features of e-health and addresses some of the above-mentioned problems. The developed system provides an electronic health record (EHR) and enables communication between separate health care organizations such as the clinic, pharmacy and laboratory. To develop this system, the Service Oriented Architecture (SOA) is adopted as a design approach, which helps to design several independent modules that communicate by using web services. The layering design pattern is used in designing each module as it provides reusability that allows the business logic layer to be reused by different higher layers such as the web service or the website in our system. The experimental analysis has shown that the project has successfully achieved its aims toward solving the problems related to the paper-based healthcare systems and it enables different health organization to communicate effectively. It implements four independent modules including healthcare provider, pharmacy, laboratory and medication information provider. Each module provides different functionalities and is used by a different type of user. These modules interoperate with each other using a set of web services.

Keywords: e-health, services oriented architecture (SOA), web services, interoperability

Procedia PDF Downloads 301
1095 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 125