Search results for: optimal stress location
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8688

Search results for: optimal stress location

3888 A Clinical Study on the Versatility of Lateral Supra Malleolar Flap in Lower Limb Wound Reconstruction

Authors: Animesh Gupta

Abstract:

Objective: The purpose of this study is to evaluate the versatility and outcome of lateral supra malleolar flap (LSMF) in soft tissue reconstruction of the regions including the distal leg, ankle, dorsal foot and heel. Methods: From March 2021 to April 2023, 18 patients with soft tissue defects in the regions, including the distal leg, ankle, dorsal foot and heel, who underwent LSMF repair for lower limb wound reconstruction were analyzed. The location, size of the defects, etiology, outcome, complications, and other alternative options were studied and presented. Results: The follow-up period of the cases was 3-6 months after surgery. All flaps were successful; however, one flap was complicated by venous congestion and was managed by loosening a few sutures and the patient was required to elevate the affected limb to resolve the issue. Conclusion: The LSMF has numerous advantages in repairing soft tissue defects in areas involving the ankle, distal leg, heel and dorsum of the foot. In comparison to reverse sural flaps for repairing defects in the heel and lower leg, LSMF offers shorter operation time, shorter hospitalization, lower cost, and fewer postoperative complications.

Keywords: lateral supra malleolar flap, LSMF, soft tissue reconstruction, lower leg defect

Procedia PDF Downloads 66
3887 Effect of Punch and Die Profile Radii on the Maximum Drawing Force and the Total Consumed Work in Deep Drawing of a Flat Ended Cylindrical Brass

Authors: A. I. O. Zaid

Abstract:

Deep drawing is considered to be the most widely used sheet metal forming processes among the particularly in automobile and aircraft industries. It is widely used for manufacturing a large number of the body and spare parts. In its simplest form it may be defined as a secondary forming process by which a sheet metal is formed into a cylinder or alike by subjecting the sheet to compressive force through a punch with a flat end of the same geometry as the required shape of the cylinder end while it is held by a blank holder which hinders its movement but does not stop it. The punch and die profile radii play In this paper, the effects of punch and die profile radii on the autographic record, the minimum thickness strain location where the cracks normally start and cause the fracture, the maximum deep drawing force and the total consumed work in the drawing flat ended cylindrical brass cups are investigated. Five punches and five dies each having different profile radii were manufactured for this investigation. Furthermore, their effect on the quality of the drawn cups is also presented and discussed. It was found that the die profile radius has more effect on the maximum drawing force and the total consumed work than the punch profile radius.

Keywords: punch and die profile radii, deep drawing process, maximum drawing force, total consumed work, quality of produced parts, flat ended cylindrical brass cups

Procedia PDF Downloads 330
3886 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron

Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi

Abstract:

Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.

Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles

Procedia PDF Downloads 276
3885 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 223
3884 Measuring Service Recovery Quality of Electronic Shopping Customers: A Study of Select Cities in India

Authors: Ramanjaneyulu Mogili, G.V.R.K. Acharyulu

Abstract:

Indian organized retail sector is growing at a faster pace and gaining popularity. Indian Brand Equity Foundation (IBEF) reveals that the current market size of Indian retail industry is about US$ 520 billion with for growth rate 14 to 15 percent annually by 2018 the Indian retail sector is likely to grow at a CAGR of 13% to reach a size of US$ 950 billion. Developments in Information Technology have enabled online Retail sector that empowers customers to order products, conduct transactions without the need to interact physically with the retailers. In recent years, the online shopping industry has gained popularity to the point where certain categories of customers would consider buying electronic products online rather than visiting the stores. Conventionally the physical location of a store is seen as a source of competitive advantage. Online Retailing service sites provide virtual shopping space to the customers. Online Retail services are gaining momentum in India, with internet penetration improving in the country and smartphones becoming affordable along with changing lifestyles and preferences of customers. Although online shoppers prefer the convenience and choice available in online shopping, certain issues raised due to the occurrence of service failure. The proposed study attempts to measure the service recovery and failure process of electronic goods in Indian retail channels.

Keywords: service recovery, customer satisfaction, e-shopping, service failure

Procedia PDF Downloads 216
3883 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs

Authors: N. Allouache, O. Rahli

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.

Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs

Procedia PDF Downloads 137
3882 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: absorbing, carbon, carbon nickel, frequency, thicknesses

Procedia PDF Downloads 176
3881 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine

Procedia PDF Downloads 247
3880 Elemental and Magnetic Properties of Bed Sediment of Siang River, a Major River of Brahmaputra Basin

Authors: Abhishek Dixit, Sandip S. Sathe, Chandan Mahanta

Abstract:

The Siang river originates in Angsi glacier in southern Tibet (there known as the Yarlung Tsangpo). After traveling through Indus-Tsangpo suture zone and deep gorges near Namcha Barwa peak, it takes a south-ward turn and enters India, where it is known as Siang river and becomes a major tributary of the Brahmaputra in Assam plains. In this study, we have analyzed the bed sediment of the Siang river at two locations (one at extreme upstream near the India-China border and one downstream before Siang Brahmaputra confluence). We have also sampled bed sediment at the remote location of Yammeng river, an eastern tributary of Siang. The magnetic hysteresis properties show the combination of paramagnetic and weak ferromagnetic behavior with a multidomain state. Moreover, curie temperature analysis shows titanomagnetite solid solution series, which is causing the weak ferromagnetic signature. Given that the magnetic mineral was in a multidomain state, the presence of Ti, Fe carrying heave mineral, may be inferred. The Chemical index of alteration shows less weathered sediment. However, the Yammeng river sample being close to source shows fresh grains subjected to physical weathering and least chemically alteration. Enriched Ca and K and depleted Na and Mg with respect to upper continental crust concentration also points toward the less intense chemical weathering along with the dominance of calcite weathering.

Keywords: bed sediment, magnetic properties, Siang, weathering

Procedia PDF Downloads 114
3879 An Investigation on the Effect of Window Tinting on Thermal Comfort inside Office Buildings

Authors: S. El-Azzeh, A. Al-Aqqad, M. Salem, H. Al-Khaldi, S. Thaher

Abstract:

Thermal comfort studies are very important during the early stages of the building’s design. If this study was ignored, problems will start to occur for the occupants in the future. In hot climates, where solar radiations are entering buildings all year long, occupant’s thermal comfort in office buildings needs to be examined. This study aims to investigate the thermal comfort at an existing office building at the Australian College of Kuwait and test its validity and improve occupant’s thermal satisfaction by covering windows with a heat rejection tint material that enables sunlight to pass through the office while reflecting solar heat outside. Environmental variables were measured using thermal comfort data logger INNOVA 1221 to find the predicted mean vote (PMV) in the selected location. Also, subjective variables were measured to find the actual mean vote (AMV) through surveys distributed among occupants in the selected case study office. All the variables collected were analyzed and classified according to international standards ISO 7730 and ASHRAE55. The results of this study showed improvement in both PMV and AMV. The mean value of PMV based on the original design was 0.691 which dropped to 0.32 after installation and it still at comfort zone. Also, the mean value of the AMV has improved for the first occupant, where before it was -0.46 and it became -1 which is cooler. For the other occupant, it was slightly warm with a mean value of 0.9 and it was improved and became cooler with a -0.25 mean value based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) seven-point scale.

Keywords: thermal comfort, office buildings, indoor environments, predicted mean vote

Procedia PDF Downloads 184
3878 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: evolutionary algorithms, chemical reaction optimization, traveling salesman, board drilling

Procedia PDF Downloads 506
3877 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results

Authors: Stewart A. Keir, Faik A. Hamad

Abstract:

This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.

Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave

Procedia PDF Downloads 225
3876 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 128
3875 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads

Authors: Gia Sirbiladze

Abstract:

Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.

Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem

Procedia PDF Downloads 119
3874 Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures

Authors: Brandon To, Yong S. Park

Abstract:

As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures.

Keywords: battery pack, electric vehicle, honeycomb, side impact

Procedia PDF Downloads 102
3873 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis

Authors: Iannick Gagnon, Alain April

Abstract:

The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.

Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis

Procedia PDF Downloads 139
3872 A Survey on Speech Emotion-Based Music Recommendation System

Authors: Chirag Kothawade, Gourie Jagtap, PreetKaur Relusinghani, Vedang Chavan, Smitha S. Bhosale

Abstract:

Psychological research has proven that music relieves stress, elevates mood, and is responsible for the release of “feel-good” chemicals like oxytocin, serotonin, and dopamine. It comes as no surprise that music has been a popular tool in rehabilitation centers and therapy for various disorders, thus with the interminably rising numbers of people facing mental health-related issues across the globe, addressing mental health concerns is more crucial than ever. Despite the existing music recommendation systems, there is a dearth of holistically curated algorithms that take care of the needs of users. Given that, an undeniable majority of people turn to music on a regular basis and that music has been proven to increase cognition, memory, and sleep quality while reducing anxiety, pain, and blood pressure, it is the need of the hour to fashion a product that extracts all the benefits of music in the most extensive and deployable method possible. Our project aims to ameliorate our users’ mental state by building a comprehensive mood-based music recommendation system called “Viby”.

Keywords: language, communication, speech recognition, interaction

Procedia PDF Downloads 47
3871 Feasibility Study of a Solar Farm Project with an Executive Approach

Authors: Amir Reza Talaghat

Abstract:

Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.

Keywords: solar farm, solar energy, execution of PV power plant PV power plant

Procedia PDF Downloads 163
3870 Designing and Costing the Concept of Servicer Satellites That Can Be Used to De-Orbit Space Debris

Authors: Paras Adlakha

Abstract:

Today the major threat to our existing and future satellites is space debris; the collision of bodies like defunct satellites with any other objects in space, including the new age ASAT (anti-satellite) weaponry system, are the main causes of the increasing amount of space debris every year. After analyzing the current situation of space debris, low earth orbit is found to be having a large density of debris as compared to any other orbit range; that's why it is selected as the target orbit for space debris removal mission. In this paper, the complete data of 24000 debris is studied based on size, altitude, inclination, mass, number of existing satellites threaten by each debris from which the rocket bodies are the type of wreckage found to be most suited for removal. The optimal method of active debris removal using a robotic arm for capturing the body to attach a de-orbit kit is used to move the debris from its orbit without making the actual contact of servicer with the debris to reduce the further the threat of collision with defunct material. The major factors which are brought into consideration while designing the concept of debris removal are tumbling, removal of debris under a low-cost mission and decreasing the factor of collisions during the mission.

Keywords: de-orbit, debris, servicer, satellite, space junk

Procedia PDF Downloads 123
3869 Impacts of Filmmaking on Destinations: Perceptions of the Residents of Arcos de Valdevez

Authors: André Rafael Ferreira, Laurentina Vareiro, Raquel Mendes

Abstract:

This study’s main objective is to explore residents’ perceptions of film-induced tourism and the impacts of filmmaking on the development of a destination. Specifically, the research examines resident´s perceptions of the social, economic, and environmental impacts on a Portuguese municipality (Arcos de Valdevez) given its feature in a popular Portuguese television series. Data is collected by means of an Internet survey, in which resident´s perceptions of the impacts of filmmaking are solicited. Residents generally agree that the recording and exhibition of the television series is important to the municipality, and contributes to the increased number of tourists. Given that residents consider that the positive impacts are more significant than the negative impacts, they supported the recording of another television series in the same municipality. Considering that destination managers and tourism development authorities aim to plan for optimal tourism development, and at the same time wish to minimize the negative impacts of this development on the local communities, monitoring residents’ opinions of perceived impacts is a good way of incorporating their reaction into tourism planning and development. The results of this research may provide useful information in this sense.

Keywords: film-induced tourism, residents’ perceptions, tourism development, tourism impacts

Procedia PDF Downloads 443
3868 A Study on Urine Flow Characteristics in Ureter with Fluid-Structure Interaction

Authors: Myoung Je Song

Abstract:

Ureteral stent insertion is being used as one of the clinical interventional treatments due to stenosis and/or obstruction in the ureter. For the development of the ureteral stents, we have to know the flow patterns with and without peristalsis in the ureter. The purpose of this study is to understand the flow characteristics and movement of the ureter for the ureter model according to the presence or absence of peristalsis and to use it as fundamental information to design the optimal ureteral stent. In this study, CFD (Computational Fluid Dynamics) and FSI (Fluid-Structure Interaction) approaches were applied and compared the flow characteristics in the ureter. The distribution of streamlines was different in the near ureteropelvic junction. As a result of analyzing the area change of the ureter, the area change was large at the frontal and posterior ends, and the frontal and posterior aspects of the area change were reversed. There was no significant difference in the flow rate at the ureter outlet, and the movement of the ureter was larger when peristalsis was considered. Finally, as an introductory stage for the development of ureteral stents, basic information about the ureters according to the presence or absence of peristalsis is acquired.

Keywords: computational fluid dynamics, fluid-structure interaction, peristalsis, urine flow

Procedia PDF Downloads 93
3867 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response

Procedia PDF Downloads 310
3866 Gis Database Creation for Impacts of Domestic Wastewater Disposal on BIDA Town, Niger State Nigeria

Authors: Ejiobih Hyginus Chidozie

Abstract:

Geographic Information System (GIS) is a configuration of computer hardware and software specifically designed to effectively capture, store, update, manipulate, analyse and display and display all forms of spatially referenced information. GIS database is referred to as the heart of GIS. It has location data, attribute data and spatial relationship between the objects and their attributes. Sewage and wastewater management have assumed increased importance lately as a result of general concern expressed worldwide about the problems of pollution of the environment contamination of the atmosphere, rivers, lakes, oceans and ground water. In this research GIS database was created to study the impacts of domestic wastewater disposal methods on Bida town, Niger State as a model for investigating similar impacts on other cities in Nigeria. Results from GIS database are very useful to decision makers and researchers. Bida Town was subdivided into four regions, eight zones, and 24 sectors based on the prevailing natural morphology of the town. GIS receiver and structured questionnaire were used to collect information and attribute data from 240 households of the study area. Domestic wastewater samples were collected from twenty four sectors of the study area for laboratory analysis. ArcView 3.2a GIS software, was used to create the GIS databases for ecological, health and socioeconomic impacts of domestic wastewater disposal methods in Bida town.

Keywords: environment, GIS, pollution, software, wastewater

Procedia PDF Downloads 411
3865 Despiking of Turbulent Flow Data in Gravel Bed Stream

Authors: Ratul Das

Abstract:

The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.

Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra

Procedia PDF Downloads 292
3864 3D Object Detection for Autonomous Driving: A Comprehensive Review

Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy

Abstract:

Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.

Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning

Procedia PDF Downloads 50
3863 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance

Authors: Mina Naeini, Thomas A. Adams II

Abstract:

Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.

Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs

Procedia PDF Downloads 123
3862 The Impact of Technology on Computer Systems and Technology

Authors: Bishoy Abouelsoud Saad Amin

Abstract:

This paper examines the use of computer and its related health hazard among computer users in South-Western zone of Nigeria. Two hundred and eighteen (218) computer users constituted the population used to evaluate association between posture, extensive computer use and related health hazard. The instruments for the study are a questionnaire on demographics, lifestyle, body features and work ability index while mean rating, standard deviation and t test were used for data analysis. Identified health related hazard include damages to the eyesight, bad posture, arthritis, musculoskeletal disorders, headache, stress and so on. The results showed that factors such as work demand, posture, closeness to computer screen and excessive working hours on computers constitute health hazards in both old and young computer users of various gender. It is therefore recommended that total number of hours spent with computer should be monitored and controlled.

Keywords: computer game, metaphor, middle school students, virtual environments computer auditing, risk, measures to prevent, information management computer-related health hazard, musculoskeletal disorders, computer usage, work ability index

Procedia PDF Downloads 45
3861 The Optimal Production of Long-Beans in the Swamp Land by Application of Rhizobium and Rice Husk Ash

Authors: Hasan Basri Jumin

Abstract:

The swamp land contains high iron, aluminum, and low pH. Calcium and magnesium in the rice husk ash can reduce plant poisoning so that plant growth increases in fertility. The first factor was the doze of rice husk, and the second factor was 0.0 g rhizobium inoculant /kg seed, 4.0 g rhizobium inoculant/kg seed, 8 g rhizobium inoculant /kg seed, and 12 g l rhizobium inoculant /kg seed. The plants were maintained under light conditions with a + 11.45 – 12.15 hour photoperiod. The combination between rhizobium inoculant and rice husk ash has been an interacting effect on the production of long bean pod fresh weight. The mean relative growth rate, net assimilation rate, and pod fresh weight are increased by a combination of husk rice ash and rhizobium inoculant. Rice husk ash affected increases the availability of nitrogen in the land, albeit in poor condition of nutrition. Rhizobium is active in creating a fixation of nitrogen in the atmosphere because rhizobium increases the abilities of intercellular and symbiotic nitrogen in the long beans. The combination of rice husk ash and rhizobium could be effected to create a thriving in the land.

Keywords: aluminium, calcium, fixation, iron, nitrogen

Procedia PDF Downloads 95
3860 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor

Authors: Feng Tao, Han Ye, Shaoyi Liao

Abstract:

City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.

Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI

Procedia PDF Downloads 287
3859 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: energy efficiency, landscape design, plant design, xeriscape landscape

Procedia PDF Downloads 250