Search results for: open queueing network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7630

Search results for: open queueing network

2860 Contention Window Adjustment in IEEE 802.11-based Industrial Wireless Networks

Authors: Mohsen Maadani, Seyed Ahmad Motamedi

Abstract:

The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. An adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.

Keywords: average delay, contention window, distributed coordination function (DCF), jitter, industrial wireless network (IWN), maximum delay, reliability, retry limit

Procedia PDF Downloads 421
2859 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty

Authors: Tomas Menard

Abstract:

The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.

Keywords: dynamical system, control law design, sampled output, observer design

Procedia PDF Downloads 188
2858 The Use of Complementary and Alternative Medicine for Pain Relief in the Elderly: An Investigational Analysis of Seniors Residing in an Independent/Assisted Seniors’ Living Facility

Authors: Carol Cameletti

Abstract:

The goal of this study was to perform a pilot survey to assess pain frequency and intensity in an elderly population and to assess treatment options for chronic pain that include complementary and alternative medicines (CAM). Ten participants were recruited from an independent and supportive living housing facility in Northern Ontario and asked to complete two questionnaires: 1) a self-assessment on pain, and 2) the use of CAM for pain. Results from our study show that 80% of the participants experienced pains other than the regular everyday pains such as minor headaches, sprains or toothaches. Although participants stated that on average the highest level of pain they experienced within the past 24 hours had a score of 6.5 (0=no pain, 10=worst pain imaginable) the level of pain they experienced moderately interfered with their daily activities. Unfortunately, participants stated that they were only able to attain minimal levels of pain relief using treatments or medications causing some of the participants to seek alternative therapies or self-help practices. The most commonly used CAMs were vitamins/minerals, herbs and supplements, and self-help practices such as meditation, prayer, visualization and relaxation techniques. Although some of the participants stated that they had received complementary treatments directly from their physician, four of the nine participants said that they had not disclosed CAM use to their physician thereby indicating a need to open the lines of communication between healthcare providers and patients with regards to CAM use. It is our hope that the data generated from this study will serve as the platform for a pain management clinic that is client-centered, consumer-driven and truly integrative and tailored in order to meet the unique needs of older adults in Great Sudbury, Ontario.

Keywords: alternative, complementary, elderly, medicine

Procedia PDF Downloads 183
2857 Mapping Structurally Significant Areas of G-CSF during Thermal Degradation with NMR

Authors: Mark-Adam Kellerman

Abstract:

Proteins are capable of exploring vast mutational spaces. This makes it difficult for protein engineers to devise rational methods to improve stability and function via mutagenesis. Deciding which residues to mutate requires knowledge of the characteristics they elicit. We probed the characteristics of residues in granulocyte-colony stimulating factor (G-CSF) using a thermal melt (from 295K to 323K) to denature it in a 700 MHz Bruker spectrometer. These characteristics included dynamics, micro-environmental changes experienced/ induced during denaturing and structure-function relationships. 15N-1H HSQC experiments were performed at 2K increments along with this thermal melt. We observed that dynamic residues that also undergo a lot of change in their microenvironment were predominantly in unstructured regions. Moreover, we were able to identify four residues (G4, A6, T133 and Q134) that we class as high priority targets for mutagenesis, given that they all appear in both the top 10% of measures for environmental changes and dynamics (∑Δ and ∆PI). We were also able to probe these NMR observables and combine them with molecular dynamics (MD) to elucidate what appears to be an opening motion of G-CSFs binding site III. V48 appears to be pivotal to this opening motion, which also seemingly distorts the loop region between helices A and B. This observation is in agreement with previous findings that the conformation of this loop region becomes altered in an aggregation-prone state of G-CSF. Hence, we present here an approach to profile the characteristics of residues in order to highlight their potential as rational mutagenesis targets and their roles in important conformational changes. These findings present not only an opportunity to effectively make biobetters, but also open up the possibility to further understand epistasis and machine learn residue behaviours.

Keywords: protein engineering, rational mutagenesis, NMR, molecular dynamics

Procedia PDF Downloads 258
2856 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 464
2855 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 220
2854 Towards Law Data Labelling Using Topic Modelling

Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran

Abstract:

The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.

Keywords: courts of accounts, data labelling, document similarity, topic modeling

Procedia PDF Downloads 182
2853 Digital Repository as a Service: Enhancing Access and Preservation of Cultural Heritage Artefacts

Authors: Lefteris Tsipis, Demosthenes Vouyioukas, George Loumos, Antonis Kargas, Dimitris Varoutas

Abstract:

The employment of technology and digitization is crucial for cultural organizations to establish and sustain digital repositories for their cultural heritage artefacts. This utilization is also essential in facilitating the presentation of cultural works and exhibits to a broader audience. Consequently, in this work, we propose a digital repository that functions as Software as a Service (SaaS), primarily promoting the safe storage, display, and sharing of cultural materials, enhancing accessibility, and fostering a deeper understanding and appreciation of cultural heritage. Moreover, the proposed digital repository service is designed as a multitenant architecture, which enables organizations to expand their reach, enhance accessibility, foster collaboration, and ensure the preservation of their content. Specifically, this project aims to assist each cultural institution in organizing its digital cultural assets into collections and feeding other digital platforms, including educational, museum, pedagogical, and games, through appropriate interfaces. Moreover, the creation of this digital repository offers a cutting-edge and effective open-access laboratory solution. It allows organizations to have a significant influence on their audiences by fostering cultural understanding and appreciation. Additionally, it facilitates the connection between different digital repositories and national/European aggregators, promoting collaboration and information sharing. By embracing this solution, cultural institutions can benefit from shared resources and features, such as system updates, backup and recovery services, and data analytics tools, that are provided by the platform.

Keywords: cultural technologies, gaming technologies, web sharing, digital repository

Procedia PDF Downloads 81
2852 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 158
2851 Perceptions of Students toward ODL Services Quality in Facilitating Their Study: Experience of Universitas Terbuka in Managing ODL in Cultural Diversity Areas

Authors: Ribut Alam Malau, Durri Andriani, C. B. Supartomo

Abstract:

Universitas Terbuka (UT) as a higher education institution implements open and distance education is responsible to provide higher education to all Indonesian citizen wherever they live, including those reside in cultural diversity aras. Operate from Jakarta Head Office and 37 regional centers (ROs), UT is accustomed to the challenge. UT-Kupang and UT-Ambon which oversee East Nusa Tenggara and Maluku have successfully provided quality educational services for students. The two ROs have provided educational facilities which could assist the students to cope with their study in spite of the diversity situations. In order to analyze the effectiveness of the facilities provided, questionnaires focusing on tutorial services were sent to 90 students in the two ROs asking them to assess the facilities which best fulfills students’ needs in terms of their culture diversity. The results showed that UT-Kupang and UT-Ambon have successful in providing education for students in their areas as reflected in more than 80% of respondents aware of the facilities concerning tutorial service except for tutorial mechanism where only 34,5% of respondents aware of. However, despite lower rate of awareness in tutorial mechanism, majority of respondent 90.8% of respondents registered in tutorials and 95.4% will register in tutorials next semester. The majority of respondents showed appreciation for the ROs efforts to provide tutorials on weekdays which could accommodate their beliefs. In addition, conducting tutorials in all islands also perceived highly since students did not have to commute between islands. Efforts done by UT-Kupang and UT-Ambon have proven to be appreciated by students.

Keywords: archipelago, cultural diversity, ODL, service quality, Universitas Terbuka

Procedia PDF Downloads 473
2850 A Method of Manufacturing Low Cost Utility Robots and Vehicles

Authors: Gregory E. Ofili

Abstract:

Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.

Keywords: automation, robotics, utility robot, small-hold farm, robot operating system

Procedia PDF Downloads 75
2849 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 75
2848 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 389
2847 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 132
2846 Randomized Controlled Study of the Antipyretic Efficacy of Oral Paracetamol, Intravenous Paracetamol, and Intramuscular Diclofenac

Authors: Firjeeth C. Paramba, Vamanjore A. Naushad, Nishan K. Purayil, Osama H. Mohammed, Prem Chandra

Abstract:

Background: Fever is a common problem in adults visiting the emergency department. Extensive studies have been done in children comparing the efficacy of various antipyretics. However, studies on the efficacy of antipyretic drugs in adults are very scarce. To the best of our knowledge, no controlled trial has been carried out comparing the antipyretic efficacy of paracetamol (oral and intravenous) and intramuscular diclofenac in adults. Methods: In this parallel-group, open-label trial, participants aged 14–75 years presenting with fever who had a temperature of more than 38.5°C were enrolled and treated. Participants were randomly allocated to receive treatment with 1,000 mg oral paracetamol (n=145), 1,000 mg intravenous paracetamol (n=139), or 75 mg intramuscular diclofenac (n=150). The primary outcome was degree of reduction in mean oral temperature at 90 minutes. The efficacy of diclofenac versus oral and intravenous paracetamol was assessed by superiority comparison. Analysis was done using intention to treat principles. Results: After 90 minutes, all three groups showed a significant reduction in mean temperature, with intramuscular diclofenac showing the greatest reduction (−1.44 ± 0.43, 95% confidence interval [CI] −1.4 to −2.5) and oral paracetamol the least (−1.08 ± 0.51, 95% CI −0.99 to −2.2). After 120 minutes, there was a significant difference observed in the mean change from baseline temperature between the three treatment groups (P, 0.0001). Significant changes in temperature were observed in favor of intramuscular diclofenac over oral and intravenous paracetamol at each time point from 60 minutes through 120 minutes inclusive. Conclusion: Both intramuscular diclofenac and intravenous paracetamol showed superior antipyretic activity than oral paracetamol. However, in view of its ease of administration, intramuscular diclofenac can be used as a first-choice antipyretic in febrile adults in the emergency department.

Keywords: antipyretic, intramuscular, intravenous, paracetamol, diclofenac, emergency department

Procedia PDF Downloads 374
2845 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 79
2844 I Feel Pretty: Using Discretization to Unpack Gender Disparity in Musical Theatre - A Study of Leonard Bernstein’s West Side Story

Authors: Erin McKellar, Narelle Yeo

Abstract:

Gender disparity can be found in the representation of the female characters in Leonard Bernstein’s musical West Side Story. As a postmodern composer, Bernstein was open about his social activism, yet did not consider his compositional portrayal of female characters as part of that activism. Using discretization as an analysis tool, this thesis explores the melodic contours of male and female songs in West Side Story to show differences in complexity between male and female characterisation. The analysis explores the intervallic relationship between the vocal line and melodic color in relation to the accompaniment harmony, taking into consideration the use of consonance and dissonance. West Side Story is commonly known for its distinct use of the tritone motif and its inherent dissonance. It is evident when reviewing the findings of this study that there is a distinct disparity between male-led and female-led music. The male-led numbers consistently adhere to a dissonant aesthetic with the tritone motif implemented in all of the extracted songs. By contrast, the female songs remain consonant with simple intervallic movements. By examining the results of this study through the lens of Equality Feminism, this thesis finds that Bernstein has simplified the characterisations of the female leads. The thesis further proposes that without cognisant consideration of the compositional portrayal of women, the musical theatre will continue to reinforce gender stereotypes, as evident through this study of Bernstein’s West Side Story.

Keywords: music theatre, gender bias, composition, Leonard Bernstein

Procedia PDF Downloads 163
2843 Geo-Spatial Methods to Better Understand Urban Food Deserts

Authors: Brian Ceh, Alison Jackson-Holland

Abstract:

Food deserts are a reality in some cities. These deserts can be described as a shortage of healthy food options within close proximity of consumers. The shortage in this case is typically facilitated by a lack of stores in an urban area that provide adequate fruit and vegetable choices. This study explores new avenues to better understand food deserts by examining modes of transportation that are available to shoppers or consumers, e.g. walking, automobile, or public transit. Further, this study is unique in that it not only explores the location of large grocery stores, but small grocery and convenience stores too. In this study, the relationship between some socio-economic indicators, such as personal income, are also explored to determine any possible association with food deserts. In addition, to help facilitate our understanding of food deserts, complex network spatial models that are built on adequate algorithms are used to investigate the possibility of food deserts in the city of Hamilton, Canada. It is found that Hamilton, Canada is adequate serviced by retailers who provide healthy food choices and that the food desert phenomena is almost absent.

Keywords: Canada, desert, food, Hamilton, store

Procedia PDF Downloads 244
2842 Expert System for Road Bridge Constructions

Authors: Michael Dimmer, Holger Flederer

Abstract:

The basis of realizing a construction project is a technically flawless concept which satisfies conditions regarding environment and costs, as well as static-constructional terms. The presented software system actively supports civil engineers during the setup of optimal designs, by giving advice regarding durability, life-cycle costs, sustainability and much more. A major part of the surrounding conditions of a design process is gathered and assimilated by experienced engineers subconsciously. It is a question about eligible building techniques and their practicability by considering emerging costs. Planning engineers have acquired many of this experience during their professional life and use them for their daily work. Occasionally, the planning engineer should disassociate himself from his experience to be open for new and better solutions which meet the functional demands, as well. The developed expert system gives planning engineers recommendations for preferred design options of new constructions as well as for existing bridge constructions. It is possible to analyze construction elements and techniques regarding sustainability and life-cycle costs. This way the software provides recommendations for future constructions. Furthermore, there is an option to design existing road bridges especially for heavy duty transport. This implies a route planning tool to get quick and reliable information as to whether the bridge support structures of a transport route have been measured sufficiently for a certain heavy duty transport. The use of this expert system in bridge planning companies and building authorities will save costs massively for new and existent bridge constructions. This is achieved by consequently considering parameters like life-cycle costs and sustainability for its planning recommendations.

Keywords: expert system, planning process, road bridges, software system

Procedia PDF Downloads 278
2841 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate

Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili

Abstract:

This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.

Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE

Procedia PDF Downloads 69
2840 Histological Changes of Mice Lungs After Daily Exposure to Different Concentration of Incense Smoke

Authors: Samar Omar A. Rabah, Sahar Ragab El Hadad, Fatmah Albani

Abstract:

Since the discovery of Agarwood (Incense tree), many studies reported its characteristic effects and variable benefits, as either to produce Arabian Incense or as a traditional medicine against many diseases. Laboratory experiments were carried out on the effect of different concentrations of Incense smoke inhalation on the lung weight and tissue in female mice. This research derives its importance from the fact that Incense is heavily used in Saudi Arabia in the absence of thorough studies of its effects on health. Eighty animals are used in this study, and they are divided into four groups, each is 20 animals. Three groups are exposed to different concentrations (2, 4 and 6 gm) of Incense smoke daily for three months, and the fourth group is the control. At the end of each month, five animals from each group were dissected. Obtained data showed an increase but not significant in animal body and lung weight, this results return to natural increase as a result of normal growth of animals. Light microscope reveals some changes in the lung tissue, such as focal emphysema, rupture in the alveolar walls, hemorrhage, congestion, edema and few peri-bronchial lymphoid cells. After continuous exposure to Incense smoke focal necrosis and degradation are observed in some cells of epithelial bronchioles. Also, fibrosis of peri-bronchial, thickening in alveolar walls and aggregation of lymphoid cells are demonstrated in some lungs sections. according to the above manifestations it could be concluded that exposure to Incense smoke causes pulmonary harmful effects. Therefore, we can recommend that Incense smoke will be used only in open places to reduce its harms.

Keywords: incense smoke, lungs, histological changes of lungs, agarwood

Procedia PDF Downloads 495
2839 Development of a Smart Liquid Level Controller

Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo

Abstract:

In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.

Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module

Procedia PDF Downloads 135
2838 Improving Psychological Safety in Teaching and Social Organizations in Finland

Authors: Eija Raatikainen

Abstract:

The aim of the study is to examine psychological safety in the context of change in working life and continuous learning in social- and educational organizations. The participants in the study are social workers and vocational teachers working as employees and supervisors in the capital region of Finland (public and private sectors). Research data has been collected during 2022-2023 using the qualitative method called empathy-based stories (MEBS). Research participants were asked to write short stories about situations related to their work and work community. As researchers, we created and varied the framework narratives (MEBS) in line with the aim of the study and theoretical background. The data were analyzed with content analysis. According to the results, the barriers and prerequisites for psychological safety at work could be located in four different working culture dimensions. The work culture dimensions were named as follows: 1) a work culture focusing on interaction and emotional culture between colleagues, 2) communal work culture, 3) a work culture that enables learning, and 4) a work culture focused on structures and operating models. All these have detailed elements of barriers and prerequisites of psychological safety at work. The results derived from the enlivening methods can be utilized when working with the work community and have discussed psychological safety at work. Also, the method itself (MEBS) can prevent open discussion and reflection on psychological safety at work because of the sensitivity of the topic. Method aloud to imagine, not just talk and share your experiences directly. Additionally, the results of the study can offer one tool or framework while developing phycological safety at work.

Keywords: psychological safety, empathy, empathy-based stories, working life

Procedia PDF Downloads 74
2837 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior

Authors: Priyanka Gupta, Bipin Kumar

Abstract:

Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.

Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle

Procedia PDF Downloads 90
2836 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents

Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker

Abstract:

Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.

Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial

Procedia PDF Downloads 157
2835 Turning Parameters Affect Time up and Go Test Performance in Pre-Frail Community-Dwelling Elderly

Authors: Kuei-Yu Chien, Hsiu-Yu Chiu, Chia-Nan Chen, Shu-Chen Chen

Abstract:

Background: Frailty is associated with decreased physical performances that affect mobility of the elderly. Time up and go test (TUG) was the common method to evaluate mobility in the community. The purpose of this study was to compare the parameters in different stages of Time up and go test (TUG) and physical performance between pre-frail elderly (PFE) and non-frail elderly (NFE). We also investigated the relationship between TUG parameters and physical performance. Methods: Ninety-two community-dwelling older adults were as participants in this study. Based on Canadian Study of Health and Aging Clinical Frailty Scale, 22 older adults were classified as PFE (71.77 ± 6.05 yrs.) and 70 were classified as NFE (71.2 ± 5.02 yrs.). We performed body composition and physical performance, including balance, muscular strength/endurance, mobility, cardiorespiratory endurance, and flexibility. Results: Pre-frail elderly took significantly longer time than NFE in TUG test (p=.004). Pre-frail elderly had lower turning average angular velocity (p = .017), turning peak angular velocity (p = .041) and turning-stand to sit peak angular velocity (p = .037) than NFE. The turning related parameters related to open-eye stand on right foot, 30-second chair stand test, back scratch, and 2-min step tests. Conclusions: Turning average angular velocity, turning peak angular velocity and turning-stand to sit peak angular velocity mainly affected the TUG performance. We suggested that static/dynamic balance, agility, flexibility, and muscle strengthening of lower limbs exercise were important to PFE.

Keywords: mobility, aglity, active ageing, functional fitness

Procedia PDF Downloads 189
2834 Using Possibility Books to Develop Creativity Mindsets - a New Pedagogy for Learning Science, Math, and Engineering

Authors: Michael R. Taber, Kristin Stanec

Abstract:

This paper presents year-two of a longitudinal study on implementing Possibility Books into undergraduate courses to develop a student's creativity mindset: tolerating ambiguity, willingness to risk failure, curiosity, and openness to embrace possibility thinking through unexpected connections. Courses involved in this research span disciplines in the natural and social sciences and the humanities. Year one of the project developed indices from which baseline data could be analyzed. The two significant indices ( > 0.7) were "creativity mindset" and "intentional interactions." Preliminary qualitative and quantitative data analysis indicated that students found the new pedagogical intervention as a safe space to learn new strategies, recognize patterns, and define structures through innovative notetaking forms. Possibility Books in Natural Science courses were designed to develop students' conceptualization of science and math. Using Possibility Books in all disciplines provided a space for students to practice divergent thinking (i.e.,Possibilities), convergent thinking (i.e., forms that express meaning), and risk-taking (i.e., the vulnerability associated with expression). Qualitative coding of open responses on a post-survey revealed two major themes: 1) Possibility Books provided a mind space for learning about self, and 2) provided a calming opportunity to connect concepts. Quantitative analysis indicated significant correlations between focused headspace and notetaking (r = 0.555, p < 0.001), focused headspace, and connecting with others (r = 0.405, p < 0.001).

Keywords: pedagogy, science education, learning methods, creativity mindsets

Procedia PDF Downloads 25
2833 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization

Procedia PDF Downloads 280
2832 Analysis and Performance of European Geostationary Navigation Overlay Service System in North of Algeria for GPS Single Point Positioning

Authors: Tabti Lahouaria, Kahlouche Salem, Benadda Belkacem, Beldjilali Bilal

Abstract:

The European Geostationary Navigation Overlay Service (EGNOS) provides an augmentation signal to GPS (Global Positioning System) single point positioning. Presently EGNOS provides data correction and integrity information using the GPS L1 (1575.42 MHz) frequency band. The main objective of this system is to provide a better real-time positioning precision than using GPS only. They are expected to be used with single-frequency code observations. EGNOS offers navigation performance for an open service (OS), in terms of precision and availability this performance gradually degrades as moving away from the service area. For accurate system performance, the service will become less and less available as the user moves away from the EGNOS service. The improvement in position solution is investigated using the two collocated dual frequency GPS, where no EGNOS Ranging and Integrity Monitoring Station (RIMS) exists. One of the pseudo-range was kept as GPS stand-alone and the other was corrected by EGNOS to estimate the planimetric and altimetric precision for different dates. It is found that precision in position improved significantly in the second due to EGNOS correction. The performance of EGNOS system in the north of Algeria is also investigated in terms of integrity. The results show that the horizontal protection level (HPL) value is below 18.25 meters (95%) and the vertical protection level (VPL) is below 42.22 meters (95 %). These results represent good integrity information transmitted by EGNOS for APV I service. This service is thus compliant with the aviation requirements for Approaches with Vertical Guidance (APV-I), which is characterised by 40 m HAL (horizontal alarm limit) and 50 m VAL (vertical alarm limit).

Keywords: EGNOS, GPS, positioning, integrity, protection level

Procedia PDF Downloads 227
2831 An Experimental Quantitative Case Study of Competency-Based Learning in Online Mathematics Education

Authors: Pascal Roubides

Abstract:

The presentation proposed herein describes a research case study of a hybrid application of the competency-based education model best exemplified by Western Governor’s University, within the general temporal confines of an accelerated (8-week) term of a College Algebra course at the author’s institution. A competency-based model was applied to an accelerated online College Algebra course, built as an Open Educational Resources (OER) course, seeking quantifiable evidence of any differences in the academic achievement of students enrolled in the competency-based course and the academic achievement of the current delivery of the same course. Competency-based learning has been gaining in support in recent times and the author’s institution has also been involved in its own efforts to design and develop courses based on this approach. However, it is unknown whether there had been any research conducted to quantify evidence of the effect of this approach against traditional approaches prior to the author’s case study. The research question sought to answer in this experimental quantitative study was whether the online College Algebra curriculum at the author’s institution delivered via an OER-based competency-based model can produce statistically significant improvement in retention and success rates against the current delivery of the same course. Results obtained in this study showed that there is no statistical difference in the retention rate of the two groups. However, there was a statistically significant difference found between the rates of successful completion of students in the experimental group versus those in the control group.

Keywords: competency-based learning, online mathematics, online math education, online courses

Procedia PDF Downloads 129