Search results for: magnetic lines of force as waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5294

Search results for: magnetic lines of force as waves

524 Inertia Friction Pull Plug Welding, a New Weld Repair Technique of Aluminium Friction Stir Welding

Authors: Guoqing Wang, Yanhua Zhao, Lina Zhang, Jingbin Bai, Ruican Zhu

Abstract:

Friction stir welding with bobbin tool is a simple technique compared to conventional FSW since the backing fixture is no longer needed and assembling labor is reduced. It gets adopted more and more in the aerospace industry as a result. However, a post-weld problem, the left keyhole, has to be fixed by forced repair welding. To close the keyhole, the conventional fusion repair could be an option if the joint properties are not deteriorated; friction push plug welding, a forced repair, could be another except that a rigid support unit is demanded at the back of the weldment. Therefore, neither of the above ways is satisfaction in welding a large enclosed structure, like rocket propellant tank. Although friction pulls plug welding does not need a backing plate, the wide applications are still held back because of the disadvantages in respects of unappropriated tensile stress, (i.e. excessive stress causing neck shrinkage of plug that will bring about back defects while insufficient stress causing lack of heat input that will bring about face defects), complicated welding parameters (including rotation speed, transverse speed, friction force, welding pressure and upset),short welding time (approx. 0.5 sec.), narrow windows and poor stability of process. In this research, an updated technique called inertia friction pull plug welding, and its equipment was developed. The influencing rules of technological parameters on joint properties of inertia friction pull plug welding were observed. The microstructure characteristics were analyzed. Based on the elementary performance data acquired, the conclusion is made that the uniform energy provided by an inertia flywheel will be a guarantee to a stable welding process. Meanwhile, due to the abandon of backing plate, the inertia friction pull plug welding is considered as a promising technique in repairing keyhole of bobbin tool FSW and point type defects of aluminium base material.

Keywords: defect repairing, equipment, inertia friction pull plug welding, technological parameters

Procedia PDF Downloads 313
523 Development of a Sprayable Piezoelectric Material for E-Textile Applications

Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby

Abstract:

E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.

Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile

Procedia PDF Downloads 465
522 Wrestling with Religion: A Theodramatic Exploration of Morality in Popular Culture

Authors: Nicholas Fieseler

Abstract:

The nature of religion implicit in popular culture is relevant both in and out of the university. The traditional rules-based conception of religion and the ethical systems that emerge from them do not necessarily convey the behavior of daily life as it exists apart from spaces deemed sacred. This paper proposes to examine the religion implicit in the popular culture phenomenon of professional wrestling and how that affects the understanding of popular religion. Pro wrestling, while frequently dismissed, offers a unique manner through which to re-examine religion in popular culture. A global phenomenon, pro wrestling occupies a distinct space in numerous countries and presents a legitimate reflection of human behavior cross-culturally on a scale few other phenomena can equal. Given its global viewership of millions, it should be recognized as a significant means of interpreting the human attraction to violence and its association with religion in general. Hans Urs von Balthasar’s theory of Theodrama will be used to interrogate the inchoate religion within pro wrestling. While Balthasar developed theodrama within the confines of Christian theology; theodrama contains remarkable versatility in its potential utility. Since theodrama re-envisions reality as drama, the actions of every human actor on the stage contributes to the play’s development, and all action contains some transcendent value. It is in this sense that even the “low brow” activity of pro wrestling may be understood in religious terms. Moreover, a pro wrestling storyline acts as a play within a play: the struggles in a pro wrestling match reflect the human attitudes toward life as it exists in the sacred and profane realms. The indistinct lines separating traditionally good (face) from traditionally bad (heel)wrestlers mirror the moral ambiguity in which many people interpret life. This blurred distinction between good and bad, and large segments of an audience’s embrace of the heel wrestlers, reveal ethical constraints that guide the everyday values of pro wrestling spectators, a moral ambivalence that is often overlooked by traditional religious systems, and which has hitherto been neglected in the academic literature on pro wrestling. The significance of interpreting the religion implicit in pro wrestling through a the dramatic lens extends beyond pro wrestling specifically and can examine the religion implicit in popular culture in general. The use of theodrama mitigates the rigid separation often ascribed to areas deemed sacred/ profane, ortranscendent / immanent, enabling a re-evaluation of religion and ethical systems as practiced in popular culture. The use of theodrama will be expressed by utilizing the pro wrestling match as a literary text that reflects the society from which it emerges. This analysis will also reveal the complex nature of religion in popular culture and provides new directions for the academic study of religion. This project consciously bridges the academic and popular realms. The goal of the research is not to add only to the academic literature on implicit religion in popular culture but to publish it in a form which speaks to those outside the standard academic audiences for such work.

Keywords: ethics, popular religion, professional wrestling, theodrama

Procedia PDF Downloads 141
521 Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana

Authors: Anthony Nyamekeh-Armah Adjei, Toshiaki Aoki

Abstract:

The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities.

Keywords: electricity efficiency, high losses, human security, power outage

Procedia PDF Downloads 286
520 Music, Politics and Modernisation in China: An Analysis of 'Red Detachment of Women'

Authors: Lei Ping

Abstract:

The Western discourse of ‘modernity’ along with its objects, ideologies, and culture are brought to Imperial China by force of arms which confronted Chinese traditions. The struggle and conflicts between ‘Zhong’ (Chinese) and ‘Wai' (foreign), ‘Jiu’(Old) and ‘Xin’(New) are continuous during the turbulent times of 19th Century China. Since the foundation of the People’s Republic in 1949, China has gone through radical social, economic and cultural reform under the Communist Party’s highly centralised and autocratic political regime. The regime and Chairman Mao’s eagerness to identify the new China and establish a revolutionary mono-culture have increased political influence on the modernisation process. The ten years of Cultural Revolution (1966-76) have commonly been neglected and separated from China’s modern history due to its political, emotional and various other associations. Its cultural productions which dictated the Chinese stages during this period, namely the yangbanxi (Model Works), are largely viewed as political propaganda material with little or no artistic value in the nation’s cultural development. This paper argues that far from being anti modernisation of culture, the yangbanxi carry continuities that originate from before the cultural revolution and influence later cultural productions up till today. The focus of the paper is on Hongse Niangzijun (The Red Detachment of Women), a ballet yangbanxi (Model Works) which was performed to President Nixon during his visit to China in 1972. It depicts the female soldier Wu Qionghua’s life story: a transformation from a peasant girl to a mature communist soldier. The first part of the paper begins with an introduction to the cultural, social and political contexts under which the ballet was created and made a yangbanxi (Model work). The second part examines the application of musical devices (e.g. instrumentation, leitmotif), ranging from typical Western techniques to Chinese musical and theatrical traditions. By analysing, connecting and comparing these musical devices of various origins, the paper illustrates that the yangbanxi (Model Works) largely contributes to the ever-present, continuing and evolving modernisation of contemporary Chinese culture.

Keywords: cultural revolution, Hongse Niangzijun (Red Detachment of Women), modern China, music, Yangbanxi (model works)

Procedia PDF Downloads 244
519 Optimizing the Effectiveness of Docetaxel with Solid Lipid Nanoparticles: Formulation, Characterization, in Vitro and in Vivo Assessment

Authors: Navid Mosallaei, Mahmoud Reza Jaafari, Mohammad Yahya Hanafi-Bojd, Shiva Golmohammadzadeh, Bizhan Malaekeh-Nikouei

Abstract:

Background: Docetaxel (DTX), a potent anticancer drug derived from the European yew tree, is effective against various human cancers by inhibiting microtubule depolymerization. Solid lipid nanoparticles (SLNs) have gained attention as drug carriers for enhancing drug effectiveness and safety. SLNs, submicron-sized lipid-based particles, can passively target tumors through the "enhanced permeability and retention" (EPR) effect, providing stability, drug protection, and controlled release while being biocompatible. Methods: The SLN formulation included biodegradable lipids (Compritol and Precirol), hydrogenated soy phosphatidylcholine (H-SPC) as a lipophilic co-surfactant, and Poloxamer 188 as a non-ionic polymeric stabilizer. Two SLN preparation techniques, probe sonication and microemulsion, were assessed. Characterization encompassed SLNs' morphology, particle size, zeta potential, matrix, and encapsulation efficacy. In-vitro cytotoxicity and cellular uptake studies were conducted using mouse colorectal (C-26) and human malignant melanoma (A-375) cell lines, comparing SLN-DTX with Taxotere®. In-vivo studies evaluated tumor inhibitory efficacy and survival in mice with colorectal (C-26) tumors, comparing SLNDTX withTaxotere®. Results: SLN-DTX demonstrated stability, with an average size of 180 nm and a low polydispersity index (PDI) of 0.2 and encapsulation efficacy of 98.0 ± 0.1%. Differential scanning calorimetry (DSC) suggested amorphous encapsulation of DTX within SLNs. In vitro studies revealed that SLN-DTX exhibited nearly equivalent cytotoxicity to Taxotere®, depending on concentration and exposure time. Cellular uptake studies demonstrated superior intracellular DTX accumulation with SLN-DTX. In a C-26 mouse model, SLN-DTX at 10 mg/kg outperformed Taxotere® at 10 and 20 mg/kg, with no significant differences in body weight changes and a remarkably high survival rate of 60%. Conclusion: This study concludes that SLN-DTX, prepared using the probe sonication, offers stability and enhanced therapeutic effects. It displayed almost same in vitro cytotoxicity to Taxotere® but showed superior cellular uptake. In a mouse model, SLN-DTX effectively inhibited tumor growth, with 10 mg/kg outperforming even 20 mg/kg of Taxotere®, without adverse body weight changes and with higher survival rates. This suggests that SLN-DTX has the potential to reduce adverse effects while maintaining or enhancing docetaxel's therapeutic profile, making it a promising drug delivery strategy suitable for industrialization.

Keywords: docetaxel, Taxotere®, solid lipid nanoparticles, enhanced permeability and retention effect, drug delivery, cancer chemotherapy, cytotoxicity, cellular uptake, tumor inhibition

Procedia PDF Downloads 82
518 Sea Level Rise and Sediment Supply Explain Large-Scale Patterns of Saltmarsh Expansion and Erosion

Authors: Cai J. T. Ladd, Mollie F. Duggan-Edwards, Tjeerd J. Bouma, Jordi F. Pages, Martin W. Skov

Abstract:

Salt marshes are valued for their role in coastal flood protection, carbon storage, and for supporting biodiverse ecosystems. As a biogeomorphic landscape, marshes evolve through the complex interactions between sea level rise, sediment supply and wave/current forcing, as well as and socio-economic factors. Climate change and direct human modification could lead to a global decline marsh extent if left unchecked. Whilst the processes of saltmarsh erosion and expansion are well understood, empirical evidence on the key drivers of long-term lateral marsh dynamics is lacking. In a GIS, saltmarsh areal extent in 25 estuaries across Great Britain was calculated from historical maps and aerial photographs, at intervals of approximately 30 years between 1846 and 2016. Data on the key perceived drivers of lateral marsh change (namely sea level rise rates, suspended sediment concentration, bedload sediment flux rates, and frequency of both river flood and storm events) were collated from national monitoring centres. Continuous datasets did not extend beyond 1970, therefore predictor variables that best explained rate change of marsh extent between 1970 and 2016 was calculated using a Partial Least Squares Regression model. Information about the spread of Spartina anglica (an invasive marsh plant responsible for marsh expansion around the globe) and coastal engineering works that may have impacted on marsh extent, were also recorded from historical documents and their impacts assessed on long-term, large-scale marsh extent change. Results showed that salt marshes in the northern regions of Great Britain expanded an average of 2.0 ha/yr, whilst marshes in the south eroded an average of -5.3 ha/yr. Spartina invasion and coastal engineering works could not explain these trends since a trend of either expansion or erosion preceded these events. Results from the Partial Least Squares Regression model indicated that the rate of relative sea level rise (RSLR) and availability of suspended sediment concentration (SSC) best explained the patterns of marsh change. RSLR increased from 1.6 to 2.8 mm/yr, as SSC decreased from 404.2 to 78.56 mg/l along the north-to-south gradient of Great Britain, resulting in the shift from marsh expansion to erosion. Regional differences in RSLR and SSC are due to isostatic rebound since deglaciation, and tidal amplitudes respectively. Marshes exposed to low RSLR and high SSC likely leads to sediment accumulation at the coast suitable for colonisation by marsh plants and thus lateral expansion. In contrast, high RSLR with are likely not offset deposition under low SSC, thus average water depth at the marsh edge increases, allowing larger wind-waves to trigger marsh erosion. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes to RSLR. Monitoring and managing suspended sediment supply is not common-place, but may be critical to mitigating coastal impacts from climate change.

Keywords: lateral saltmarsh dynamics, sea level rise, sediment supply, wave forcing

Procedia PDF Downloads 134
517 The Rise and Effects of Social Movement on Ethnic Relations in Malaysia: The Bersih Movement as a Case Study

Authors: Nur Rafeeda Daut

Abstract:

The significance of this paper is to provide an insight on the role of social movement in building stronger ethnic relations in Malaysia. In particular, it focuses on how the BERSIH movement have been able to bring together the different ethnic groups in Malaysia to resist the present political administration that is seen to manipulate the electoral process and oppress the basic freedom of expression of Malaysians. Attention is given on how and why this group emerged and its mobilisation strategies. Malaysia which is a multi-ethnic and multi-religious society gained its independence from the British in 1957. Like many other new nations, it faces the challenges of nation building and governance. From economic issues to racial and religious tension, Malaysia is experiencing high level of corruption and income disparity among the different ethnic groups. The political parties in Malaysia are also divided along ethnic lines. BERSIH which is translated as ‘clean’ is a movement which seeks to reform the current electoral system in Malaysia to ensure equality, justice, free and fair elections. It was originally formed in 2007 as a joint committee that comprised leaders from political parties, civil society groups and NGOs. In April 2010, the coalition developed as an entirely civil society movement unaffiliated to any political party. BERSIH claimed that the electoral roll in Malaysia has been marred by fraud and other irregularities. In 2015, the BERSIH movement organised its biggest rally in Malaysia which also includes 38 other rallies held internationally. Supporters of BERSIH that participated in the demonstration were comprised of all the different ethnic groups in Malaysia. In this paper, two social movement theories are used: resource mobilization theory and political opportunity structure to explain the emergence and mobilization of the BERSIH movement in Malaysia. Based on these two theories, corruption which is believed to have contributed to the income disparity among Malaysians has generated the development of this movement. The rise of re-islamisation values propagated by certain groups in Malaysia and the shift in political leadership has also created political opportunities for this movement to emerge. In line with the political opportunity structure theory, the BERSIH movement will continue to create more opportunities for the empowerment of civil society and the unity of ethnic relations in Malaysia. Comparison is made on the degree of ethnic unity in the country before and after BERSIH was formed. This would include analysing the level of re-islamisation values and also the level of corruption in relation to economic income under the premiership of the former Prime Minister Mahathir and the present Prime Minister Najib Razak. The country has never seen such uprisings like BERSIH where ethnic groups which over the years have been divided by ethnic based political parties and economic disparity joined together with a common goal for equality and fair elections. As such, the BERSIH movement is a unique case where it illustrates the change of political landscape, ethnic relations and civil society in Malaysia.

Keywords: ethnic relations, Malaysia, political opportunity structure, resource mobilization theory and social movement

Procedia PDF Downloads 348
516 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 76
515 Evaluation of Environmental Management System Implementation of Construction Projects in Turkey

Authors: Aydemir Akyürek, Osman Nuri Ağdağ

Abstract:

Construction industry is in a rapid development for many years around the world and especially in Turkey. In the last three years sector has 10% growth and provides significant support on Turkey’s national economy. Many construction projects are on-going at urban and rural areas of Turkey which have substantial environmental impacts. Environmental impacts during construction phase are quite diversified and widespread. Environmental impacts of construction industry cannot be inspected properly in all cases and negative impacts may occur frequently in many projects in Turkey. In this study, implementation of ISO 14001 Environmental Management System (EMS) in construction plants is evaluated. In the beginning stage quality management systems generally reviewed and ISO 14001 EMS is selected for implementation. Standard requirements are examined first and implementation of every standard requirement is elaborated for the selected construction plant in the following stage. Key issues and common problems, gained benefits by execution of this type of international EMS standard are examined. As can be seen in sample projects, construction projects are being completed very fast and contractors are working in a highly competitive environment with low profit ratios in our country and mostly qualified work force cannot be accessible. Addition to this there are deficits on waste handling and environmental infrastructure. Besides construction companies which have substantial investments on EMSs can be faced with difficulties on competitiveness in domestic market, however professional Turkish contractors which implementing managements systems in larger scale at international projects are gaining successful results. Also the concept of ‘construction project management’ which is being implemented in successful projects worldwide cannot be implemented except larger projects in Turkey. In case of nonexistence of main management system (quality) implementation of EMSs cannot be managed. Despite all constraints, EMSs that will be implemented in this industry with commitment of top managements and demand of customers will be an enabling, facilitating tool to determine environmental aspects and impacts of construction sites, will provide higher compliance levels for environmental legislation, to establish best available methods for operational control on waste management, chemicals management etc. and to plan monitoring and measurement, to prioritize environmental aspects for investment schedules and waste management.

Keywords: environmental management system, construction projects, ISO 14001, quality

Procedia PDF Downloads 362
514 An Integrated Real-Time Hydrodynamic and Coastal Risk Assessment Model

Authors: M. Reza Hashemi, Chris Small, Scott Hayward

Abstract:

The Northeast Coast of the US faces damaging effects of coastal flooding and winds due to Atlantic tropical and extratropical storms each year. Historically, several large storm events have produced substantial levels of damage to the region; most notably of which were the Great Atlantic Hurricane of 1938, Hurricane Carol, Hurricane Bob, and recently Hurricane Sandy (2012). The objective of this study was to develop an integrated modeling system that could be used as a forecasting/hindcasting tool to evaluate and communicate the risk coastal communities face from these coastal storms. This modeling system utilizes the ADvanced CIRCulation (ADCIRC) model for storm surge predictions and the Simulating Waves Nearshore (SWAN) model for the wave environment. These models were coupled, passing information to each other and computing over the same unstructured domain, allowing for the most accurate representation of the physical storm processes. The coupled SWAN-ADCIRC model was validated and has been set up to perform real-time forecast simulations (as well as hindcast). Modeled storm parameters were then passed to a coastal risk assessment tool. This tool, which is generic and universally applicable, generates spatial structural damage estimate maps on an individual structure basis for an area of interest. The required inputs for the coastal risk model included a detailed information about the individual structures, inundation levels, and wave heights for the selected region. Additionally, calculation of wind damage to structures was incorporated. The integrated coastal risk assessment system was then tested and applied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode Island. The modeling system was applied to Hurricane Sandy and a synthetic storm. In both storm cases, effect of natural dunes on coastal risk was investigated. The resulting damage maps for the area (Charlestown) clearly showed that the dune eroded scenarios affected more structures, and increased the estimated damage. The system was also tested in forecast mode for a large Nor’Easters: Stella (March 2017). The results showed a good performance of the coupled model in forecast mode when compared to observations. Finally, a nearshore model XBeach was then nested within this regional grid (ADCIRC-SWAN) to simulate nearshore sediment transport processes and coastal erosion. Hurricane Irene (2011) was used to validate XBeach, on the basis of a unique beach profile dataset at the region. XBeach showed a relatively good performance, being able to estimate eroded volumes along the beach transects with a mean error of 16%. The validated model was then used to analyze the effectiveness of several erosion mitigation methods that were recommended in a recent study of coastal erosion in New England: beach nourishment, coastal bank (engineered core), and submerged breakwater as well as artificial surfing reef. It was shown that beach nourishment and coastal banks perform better to mitigate shoreline retreat and coastal erosion.

Keywords: ADCIRC, coastal flooding, storm surge, coastal risk assessment, living shorelines

Procedia PDF Downloads 116
513 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: cell response, excimer laser, polymer treatment, periodic pattern, surface morphology

Procedia PDF Downloads 237
512 Service Strategy And Innovation In The Food Service Industry: Basis For Designing A Competitive Advantage Model

Authors: Ma. Dina Datiles Jimenez

Abstract:

Service strategy and service Innovation has something to do with the success of the foodservice business. The foodservice business nowadays has become more competitive, and technology driven. This study aimed to determine and investigate the service innovation and strategies of the food service industry and the challenges during the pandemic to serve as the basis for a competitive advantage model. The study used mixed methods, including descriptive quantitative and qualitative methods. The Metro Manila foodservice managers were the target population of the study, which consisted of an estimated 1500 respondents from the selected cities. The assessment of service innovation for the following dimensions: product-related dimension; market-related dimension; process-related dimension; and organization-related dimension, when classified according to profile, was very large for age, gender, and educational attainment. When respondents are classified according to profile, the service strategy in terms of customer service strategy, after-sales service strategy, maintenance service strategy, research and development-oriented service strategy, and operational services strategy were all assessed with a very large extent of implementation. There was a significant difference in all four aspects of service innovation when classified based on age. However, for gender, only the market and process dimensions showed significant differences, while the product and organization conveyed no significant differences. Consequently, the evidence was not enough to prove that educational attainment differs from one another on the four aspects of service innovation. There was sufficient evidence to prove that the ages differ from one another in all aspects of service strategies. While gender and educational attainment showed no significant difference in the assessment of service strategies, Training on the trends in the foodservice industry during the pandemic is offered; technical maintenance is evident; the company allotted budget for outsourcing training; the quality control system; and online customer feedback were revealed as major indicators for service strategy. Fear of viruses, limited customers, a minimal work force, and low revenues were identified as challenges faced by the foodservice industry.

Keywords: foodservice industry, service innovation, service strategy, competitive advantage, sustainability, technology

Procedia PDF Downloads 79
511 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 72
510 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.

Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology

Procedia PDF Downloads 515
509 Test Procedures for Assessing the Peel Strength and Cleavage Resistance of Adhesively Bonded Joints with Elastic Adhesives under Detrimental Service Conditions

Authors: Johannes Barlang

Abstract:

Adhesive bonding plays a pivotal role in various industrial applications, ranging from automotive manufacturing to aerospace engineering. The peel strength of adhesives, a critical parameter reflecting the ability of an adhesive to withstand external forces, is crucial for ensuring the integrity and durability of bonded joints. This study provides a synopsis of the methodologies, influencing factors, and significance of peel testing in the evaluation of adhesive performance. Peel testing involves the measurement of the force required to separate two bonded substrates under controlled conditions. This study systematically reviews the different testing techniques commonly applied in peel testing, including the widely used 180-degree peel test and the T-peel test. Emphasis is placed on the importance of selecting an appropriate testing method based on the specific characteristics of the adhesive and the application requirements. The influencing factors on peel strength are multifaceted, encompassing adhesive properties, substrate characteristics, environmental conditions, and test parameters. Through an in-depth analysis, this study explores how factors such as adhesive formulation, surface preparation, temperature, and peel rate can significantly impact the peel strength of adhesively bonded joints. Understanding these factors is essential for optimizing adhesive selection and application processes in real-world scenarios. Furthermore, the study highlights the role of peel testing in quality control and assurance, aiding manufacturers in maintaining consistent adhesive performance and ensuring the reliability of bonded structures. The correlation between peel strength and long-term durability is discussed, shedding light on the predictive capabilities of peel testing in assessing the service life of adhesive bonds. In conclusion, this study underscores the significance of peel testing as a fundamental tool for characterizing adhesive performance. By delving into testing methodologies, influencing factors, and practical implications, this study contributes to the broader understanding of adhesive behavior and fosters advancements in adhesive technology across diverse industrial sectors.

Keywords: adhesively bonded joints, cleavage resistance, elastic adhesives, peel strength

Procedia PDF Downloads 96
508 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.

Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam

Procedia PDF Downloads 389
507 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization

Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.

Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties

Procedia PDF Downloads 128
506 Liver Regeneration of Small in situ Injury

Authors: Ziwei Song, Junjun Fan, Jeremy Teo, Yang Yu, Yukun Ma, Jie Yan, Shupei Mo, Lisa Tucker-Kellogg, Peter So, Hanry Yu

Abstract:

Liver is the center of detoxification and exposed to toxic metabolites all the time. It is highly regenerative after injury, with the ability to restore even after 70% partial hepatectomy. Most of the previous studies were using hepatectomy as injury models for liver regeneration study. There is limited understanding of small-scale liver injury, which can be caused by either low dose drug consumption or hepatocyte routine metabolism. Although these small in situ injuries do not cause immediate symptoms, repeated injuries will lead to aberrant wound healing in liver. Therefore, the cellular dynamics during liver regeneration is critical for our understanding of liver regeneration mechanism. We aim to study the liver regeneration of small-scale in situ liver injury in transgenic mice labeling actin (Lifeact-GFP). Previous studies have been using sample sections and biopsies of liver, which lack real-time information. In order to trace every individual hepatocyte during the regeneration process, we have developed and optimized an intravital imaging system that allows in vivo imaging of mouse liver for consecutive 5 days, allowing real-time cellular tracking and quantification of hepatocytes. We used femtosecond-laser ablation to make controlled and repeatable liver injury model, which mimics the real-life small in situ liver injury. This injury model is the first case of its kind for in vivo study on liver. We found that small-scale in situ liver injury is repaired by the coordination of hypertrophy and migration of hepatocytes. Hypertrophy is only transient at initial phase, while migration is the main driving force to complete the regeneration process. From cellular aspect, Akt/mTOR pathway is activated immediately after injury, which leads to transient hepatocyte hypertrophy. From mechano-sensing aspect, the actin cable, formed at apical surface of wound proximal hepatocytes, provides mechanical tension for hepatocyte migration. This study provides important information on both chemical and mechanical signals that promote liver regeneration of small in situ injury. We conclude that hypertrophy and migration play a dominant role at different stages of liver regeneration.

Keywords: hepatocyte, hypertrophy, intravital imaging, liver regeneration, migration

Procedia PDF Downloads 205
505 WILCKO-PERIO, Periodontally Accelerated Orthodontics

Authors: Kruttika Bhuse

Abstract:

Aim: Synergism between periodontists and orthodontists (periodontal accelerated osteogenic orthodontics- PAOO) creates crucial opportunities to enhance clinical outcomes of combined therapies regarding both disciplines and has made adult orthodontics a reality. Thus, understanding the biomechanics of bone remodelling may increase the clinical applications of corticotomy facilitated orthodontics with or without alveolar augmentation. Wilckodontics can be an attractive treatment option and be a “win-win” situation for both the dental surgeon and patient by reducing the orthodontic treatment time in adults. Materials and methods: In this review, data related to the clinical aspects, steps of procedure, biomechanics of bone, indications and contraindications and final outcome of wilckodontic shall be discussed. 50 supporting articles from various international journals and 70 clinical cases were reviewed to get a better understanding to design this wilckodontic - meta analysis. Various journals like the Journal Of Clinical And Diagnostic Research, Journal Of Indian Society Of Periodontology, Journal Of Periodontology, Pubmed, Boston Orthodontic University Journal, Good Practice Orthodontics Volume 2, have been referred to attain valuable information on wilckodontics which was then compiled in this single review study. Result: As a promising adjuvant technique based on the transient nature of demineralization-remineralisation process in healthy tissues, wilckodontics consists of regional acceleratory phenomenon by alveolar corticotomy and bone grafting of labial and palatal/lingual surfaces, followed by orthodontic force. The surgical wounding of alveolar bone potentiates tissue reorganization and healing by a way of transient burst of localized hard and soft tissue remodelling.This phenomenon causes bone healing to occur 10-50 times faster than normal bone turnover. Conclusion: This meta analysis helps understanding that the biomechanics of bone remodelling may increase the clinical applications of corticotomy facilitated orthodontics with or without alveolar augmentation. The main benefits being reduced orthodontic treatment time, increased bone volume and post-orthodontic stability.

Keywords: periodontal osteogenic accelerated orthodontics, alveolar corticotomy, bone augmentation, win-win situation

Procedia PDF Downloads 392
504 Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR

Authors: E. M. Condori-Peñaloza, S. S. Costa

Abstract:

Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated.

Keywords: flavonoids, HPLC, NMR, phenolic compounds

Procedia PDF Downloads 318
503 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors

Authors: Y. Saylan, F. Yılmaz, A. Denizli

Abstract:

Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.

Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM

Procedia PDF Downloads 363
502 TRAC: A Software Based New Track Circuit for Traffic Regulation

Authors: Jérôme de Reffye, Marc Antoni

Abstract:

Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies.

Keywords: track section, track circuits, space-time crossing, adaptive track section, automatic railway signalling

Procedia PDF Downloads 332
501 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 397
500 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways

Authors: Anirudh Lahiri

Abstract:

Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.

Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.

Procedia PDF Downloads 45
499 Medical Decision-Making in Advanced Dementia from the Family Caregiver Perspective: A Qualitative Study

Authors: Elzbieta Sikorska-Simmons

Abstract:

Advanced dementia is a progressive terminal brain disease that is accompanied by a syndrome of difficult to manage symptoms and complications that eventually lead to death. The management of advanced dementia poses major challenges to family caregivers who act as patient health care proxies in making medical treatment decisions. Little is known, however, about how they manage advanced dementia and how their treatment choices influence the quality of patient life. This prospective qualitative study examines the key medical treatment decisions that family caregivers make while managing advanced dementia. The term ‘family caregiver’ refers to a relative or a friend who is primarily responsible for managing patient’s medical care needs and legally authorized to give informed consent for medical treatments. Medical decision-making implies a process of choosing between treatment options in response to patient’s medical care needs (e.g., worsening comorbid conditions, pain, infections, acute medical events). Family caregivers engage in this process when they actively seek treatments or follow recommendations by healthcare professionals. Better understanding of medical decision-making from the family caregiver perspective is needed to design interventions that maximize the quality of patient life and limit inappropriate treatments. Data were collected in three waves of semi-structured interviews with 20 family caregivers for patients with advanced dementia. A purposive sample of 20 family caregivers was recruited from a senior care center in Central Florida. The qualitative personal interviews were conducted by the author in 4-5 months intervals. The ethical approval for the study was obtained prior to the data collection. Advanced dementia was operationalized as stage five or higher on the Global Deterioration Scale (GDS) (i.e., starting with the GDS score of five, patients are no longer able survive without assistance due to major cognitive and functional impairments). Information about patients’ GDS scores was obtained from the Center’s Medical Director, who had an in-depth knowledge of each patient’s health and medical treatment history. All interviews were audiotaped and transcribed verbatim. The qualitative data analysis was conducted to answer the following research questions: 1) what treatment decisions do family caregivers make while managing the symptoms of advanced dementia and 2) how do these treatment decisions influence the quality of patient life? To validate the results, the author asked each participating family caregiver if the summarized findings accurately captured his/her experiences. The identified medical decisions ranged from seeking specialist medical care to end-of-life care. The most common decisions were related to arranging medical appointments, medication management, seeking treatments for pain and other symptoms, nursing home placement, and accessing community-based healthcare services. The most challenging and consequential decisions were related to the management of acute complications, hospitalizations, and discontinuation of treatments. Decisions that had the greatest impact on the quality of patient life and survival were triggered by traumatic falls, worsening psychiatric symptoms, and aspiration pneumonia. The study findings have important implications for geriatric nurses in the context of patient/caregiver-centered dementia care. Innovative nursing approaches are needed to support family caregivers to effectively manage medical care needs of patients with advanced dementia.

Keywords: advanced dementia, family caregiver, medical decision-making, symptom management

Procedia PDF Downloads 121
498 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 77
497 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 329
496 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 392
495 The Effects of Absenteeism on Nurses That Remain at Work at the Mankweng Hospital in the Capricorn District, Limpopo Province in South Africa

Authors: Mokgadi Malatji, Tebogo Mothiba, Rambelani Malema

Abstract:

Absenteeism is a global problem in the working force and this is no exception in the nursing profession. A lot of attention has been drawn to factors that contribute to absenteeism however little attention has been placed on the effects of absenteeism on the remaining workers/nurses being left behind in the workplace by their colleagues. Nurses absent themselves leaving behind their colleagues to do their work. Nurses who are committed to their work often find themselves working under strenuous conditions due to inadequate staff. These may lead to poor patient care provision, nurses feeling overworked and sick due to the increased workload. The purpose of this study was to investigate the effects of absenteeism on nurses that remained at work at Mankweng Hospital in the Capricorn District, Limpopo Province. A descriptive cross-sectional quantitative research design was conducted to determine if there were any effects of absenteeism on nurses remaining at work. Data collection was done using structured questionnaires. The respondents (n=107), consisted of different categories of registered nurses (professional nurses (n=43), auxiliary nurses (n=40) and staff nurses (n=24)) who participated in this study. The findings indicated that most nurses (76, 6%) are demotivated and they struggle with completion of duties when their colleagues are absent. Patient care that nurses provided when their colleagues were absent was of poor quality as set standards and principles were not adhered to. Individualized patient care was not being implemented due to absenteeism. This simply implies that routine work is being done to cover basic duties. Most nurses (74, 8%) believed that favoritism and lack of appreciation of nurse’s skills and capabilities are being displayed by managers and that this contributes to absenteeism. Nurses who are loyal sacrifice their time and work overtime for absent colleagues and this led to fatigue and stress. From the study findings, it is recommended that nurses be trained frequently to upgrade their studies to motivate them to work. The government can provide this training to improve their skills as this will motivate nurses to work harder and be committed to their work. Training can be offered after a stipulated period. For example, after every five years, a nurse can be provided with a new skill. Team building events must be encouraged for the whole hospital to motivate staff. In conclusion, the study revealed that absenteeism poses detrimental effects on nurses, the hospital and patients. More and more nurses end up changing workplace due to these effects.

Keywords: absenteeism, effects, nurses, remaining at work

Procedia PDF Downloads 254