Search results for: indigenous learning space
6518 Portfolio Assessment and English as a Foreign Language Aboriginal Students’ English Learning Outcome in Taiwan
Authors: Li-Ching Hung
Abstract:
The lack of empirical research on portfolio assessment in aboriginal EFL English classes of junior high schools in Taiwan may inhibit EFL teachers from appreciating the utility of this alternative assessment approach. This study addressed the following research questions: 1) understand how aboriginal EFL students and instructors of junior high schools in Taiwan perceive portfolio assessment, and 2) how portfolio assessment affects Taiwanese aboriginal EFL students’ learning outcomes. Ten classes of five junior high schools in Taiwan (from different regions of Taiwan) participated in this study. Two classes from each school joined the study, and each class was randomly assigned as a control group, and one was the experimental group. These five junior high schools consisted of at least 50% of aboriginal students. A mixed research design was utilized. The instructor of each class implemented a portfolio assessment for 15 weeks of the 2015 Fall Semester. At the beginning of the semester, all participants took a GEPT test (pretest), and in the 15th week, all participants took the same level of GEPT test (post-test). Scores of students’ GEPT tests were checked by the researcher as supplemental data in order to understand each student’s performance. In addition, each instructor was interviewed to provide qualitative data concerning students’ general learning performance and their perception of implementing portfolio assessments in their English classes. The results of this study were used to provide suggestions for EFL instructors while modifying their lesson plans regarding assessment. In addition, the empirical data were used as references for EFL instructors implementing portfolio assessments in their classes effectively.Keywords: assessment, portfolio assessment, qualitative design, aboriginal ESL students
Procedia PDF Downloads 1466517 Implementing Effective Strategies to Improve Teaching and Learning in Higher Education: Balancing the Engagement Acts between Lecturers And Students
Authors: Jeffrey Siphiwe Mkhize
Abstract:
Twelve years of schooling for most South African children, particularly those children from disadvantaged past, are confronted with numerous and diverse challenges. These challenges range from infrastructural limitations, language of teaching, poor resources and varying family backgrounds. Likewise, schools are categorized to signify schools’ geographic location, poverty lines, societal class and type of students that the school are likely to enroll. Such categorization perpetuates particular lines of identities that are indirectly reinforced by the same system that seeks to redress. South African universities prefer point systems to determine students’ suitability to gain access to their programmes. Once students are admitted based on the qualifying points there is an assumed equity in the manner in which they receive tuition. They are assumed as equal; noting the widened access to South African universities as means to redress past inequalities. Given the challenges, inequalities, it is necessary to view higher education as a site for knowledge construction that is accessible to all students. Epistemological access is key to all students irrespective of their socio-economic status. This paper seeks to contribute to the discourse of student engagement using lecturer-student relationship as a lens to understand this phenomenon. Data were generated using South African Survey of Student Engagement, focus group interviews, semi-structured one-on-one-interviews as well as document analysis. The focus was on students registered for the first year of a Bachelor of Education degree as well as lecturers that teach high risk modules in this qualification at the same level. The findings suggest that lecturers are challenged by overcrowded classrooms and over-enrolled modules; this challenge hampers their good intentions to become more efficient and innovative in their teaching. Students lack confidence in approaching lecturers for assistance. Collaborative learning has stronger results and students believe in self-support to deal with their challenges based on their individual strengths. Collaborative learning is key to student academic performance.Keywords: collaborative learning, consultations, student engagement, student performance
Procedia PDF Downloads 1136516 The Applications of Aritificial Intelligence to the Predictions of Processing-Microstructure-Property Relationships
Authors: Fei Peng, Hai Xiao, Rajendra K. Bordia, Jianhua Tong, Dongsheng Li
Abstract:
the report high-throughput, ultra-fast laser sintering of alumina sample array and characterization of sample units’ microstructure and hardness, as a fast exploration of laser processing parameters, microstructure, and property. These experimental data were used to train machine-learning (ML) models. Accurate ML predictions were demonstrated for the processing-microstructure-property relationship, specifically in (1) prediction of the microstructure of alumina under arbitrary laser power and (2) prediction of the expected microstructure from the desired hardness. An independent neural network was developed and showed that ML-predicted microstructure had less than 10% error from real ones, in terms of projected hardness. To monitor the microstructure during laser sintering, we demonstrated an ML model that can instantaneously predict ceramic’s microstructure at the laser spot, based on the laser spot brightness. The ML model can generate more than 10 predictions per second, and the error in average grain size was less than 5% from the experimental observations.Keywords: machine learning, additive manufacturing, ceramics, microstructure, hardness
Procedia PDF Downloads 46515 Design Analysis for Declining Admission Trend in Canada Public Diploma Programs
Authors: Zulfiqar Ali
Abstract:
The current survey reports and data demonstrate a declining trend of admissions in instructor-led synchronous diploma programs in Canadian public higher education institutes. A significant impact can also be seen on various Information Technology (IT) related diploma programs in prominent Canadian higher education institutes across the country. The significant external factors that impact the students’ interests in admission in instructor-led synchronous Information Technology related diploma programs include but not limited to easy access to online learning materials provided by external competitors. The high involvement of the IT giants like Microsoft, Cisco, Google, AWS, Linux in training and certification programs through their Learning Management Systems (LMS) came with their academy’s establishment. They offer and provide very scientific advanced kind of learning and teaching resources embedded with cloud and artificial Intelligence (AI) tools, techniques and design. The other external factor is the best fit of rate of change of technology (velocity) in business vis-à-vis the rate of change of adoption and transformation of could-based Artificial Intelligence (AI) in Canadian public higher education institutes for diploma programs. The significant internal factors may include but are not limited to the legacy type of curriculum design, tools, techniques, style, and delivery. The other major contribution in declining admission trend in Canadian public higher education institute’s IT related programs.is the diversity of learning and teaching styles comes from existing hiring and immigration processes. The proposed research addresses the major contribution of both internal and external factors in declining admission trend in instructor-led synchronous diploma programs in Canadian public higher education institutes. The research approaches to be adopted for the proposed work include collecting data, filtering data, quantitative analysis, qualitative analysis and mixed approach. The focal point of this research is the contribution of major internal factors in declining admission trend including curriculum design, delivery methods, academic integrity, velocity, cloud-based AI tools, techniques and integration with existing learning management system. Finally, the research results come up with analysis-based recommendations and design to cope with challenge of declining admission trend in Canadian public higher education institutes diploma programs vis-à-vis internal and external factors.Keywords: advanced curriculum design, analysis of internal educational factors, analysis of external educational factors, educational technology
Procedia PDF Downloads 86514 An Investigation into Libyan Teachers’ Views of Children’s Emotional and Behavioral Difficulties
Authors: Abdelbasit Gadour
Abstract:
A great number of children in mainstream schools across Libya are currently living with emotional, behavioral difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioral difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Libya find classroom behavior problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioral difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.Keywords: children, emotional and behavior difficulties, learning, teachers'
Procedia PDF Downloads 1476513 The Pedagogical Integration of Digital Technologies in Initial Teacher Training
Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos
Abstract:
The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.Keywords: digital technologies, initial teacher training, pedagogical use of ICT, skills
Procedia PDF Downloads 1266512 Seeking Compatibility between Green Infrastructure and Recentralization: The Case of Greater Toronto Area
Authors: Sara Saboonian, Pierre Filion
Abstract:
There are two distinct planning approaches attempting to transform the North American suburb so as to reduce its adverse environmental impacts. The first one, the recentralization approach, proposes intensification, multi-functionality and more reliance on public transit and walking. It thus offers an alternative to the prevailing low-density, spatial specialization and automobile dependence of the North American suburb. The second approach concentrates instead on the provision of green infrastructure, which rely on natural systems rather than on highly engineered solutions to deal with the infrastructure needs of suburban areas. There are tensions between these two approaches as recentralization generally overlooks green infrastructure, which can be space consuming (as in the case of water retention systems), and thus conflicts with the intensification goals of recentralization. The research investigates three Canadian planned suburban centres in the Greater Toronto Area, where recentralization is the current planning practice, despite rising awareness of the benefits of green infrastructure. Methods include reviewing the literature on green infrastructure planning, a critical analysis of the Ontario provincial plans for recentralization, surveying residents’ preferences regarding alternative suburban development models, and interviewing officials who deal with the local planning of the three centres. The case studies expose the difficulties in creating planned suburban centres that accommodate green infrastructure while adhering to recentralization principles. Until now, planners have been mostly focussed on recentralization at the expense of green infrastructure. In this context, the frequent lack of compatibility between recentralization and the space requirements of green infrastructure explains the limited presence of such infrastructures in planned suburban centres. Finally, while much attention has been given in the planning discourse to the economic and lifestyle benefits of recentralization, much less has been made of the wide range of advantages of green infrastructure, which explains limited public mobilization over the development of green infrastructure networks. The paper will concentrate on ways of combining recentralization with green infrastructure strategies and identify the aspects of the two approaches that are most compatible with each other. The outcome of such blending will marry high density, public-transit oriented developments, which generate walkability and street-level animation, with the presence of green space, naturalized settings and reliance on renewable energy. The paper will advance a planning framework that will fuse green infrastructure with recentralization, thus ensuring the achievement of higher density and reduced reliance on the car along with the provision of critical ecosystem services throughout cities. This will support and enhance the objectives of both green infrastructure and recentralization.Keywords: environmental-based planning, green infrastructure, multi-functionality, recentralization
Procedia PDF Downloads 1366511 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 2286510 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings
Authors: Sandeep Bandarwadkar, Tadas Zdankus
Abstract:
To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.Keywords: heat transfer, accumulation of heat, underground building, soil charge
Procedia PDF Downloads 766509 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning
Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang
Abstract:
Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.Keywords: intelligence, software architecture, re-architecting, software reuse, High level design
Procedia PDF Downloads 1246508 The Association between Psychosocial Characteristics, Training Variables and Well-Being: An Exploratory Study among Organizational Workers
Authors: Norshaffika I. Zaiedy Nor, Andrew P. Smith
Abstract:
Background: Training is essential to develop individuals’ expertise to meet current and future job demands and to improve work performance. At the same time, individuals’ well-being is crucial to ensure that they can fully and positively carry out their daily duties. In addition to the studies that have examined what constitutes well-being and the factors behind it, many researchers have investigated the predictors of training effectiveness and transfer of training. However, there has been very little integration between them. This study was an attempt to bridge the gap between training effectiveness predictors and well-being. Purpose: This research paper aimed to investigate the association between well-being among employees and psychosocial characteristics, together with training variables. Training variables consist of motivation to learn; learning; implementation intention; and cognitive dissonance. Methodology: In total, 210 workers who had undergone various training programs completed an online survey measuring various psychosocial characteristics, four training variables, and level of well-being. Findings: The results showed that certain types of positive psychosocial characteristics (e.g., positive personality, positive work behaviors, positive work and resources) predict motivation to learn, learning and implementation intention. Meanwhile, negative psychosocial characteristics (e.g. negative work demands and resources, negative coping) predict cognitive dissonance. Also, all the training variables had a moderate to high correlation with well-being. However, after controlling other variables (age, gender, education and psychosocial characteristics), none of the training variables predicted well-being. Self-determination theory, cognitive dissonance theory, and the DRIVE model were used to explain these findings. Conclusion: As there is limited research on the integration of training variables with well-being, this study gives a new perspective in the field of both training and well-being. Further investigations are needed to examine the relationships between them.Keywords: cognitive dissonance, implementation intention, learning, motivation to learn, psychosocial characteristics, well-being
Procedia PDF Downloads 2186507 Employing Visual Culture to Enhance Initial Adult Maltese Language Acquisition
Authors: Jacqueline Żammit
Abstract:
Recent research indicates that the utilization of right-brain strategies holds significant implications for the acquisition of language skills. Nevertheless, the utilization of visual culture as a means to stimulate these strategies and amplify language retention among adults engaging in second language (L2) learning remains a relatively unexplored area. This investigation delves into the impact of visual culture on activating right-brain processes during the initial stages of language acquisition, particularly in the context of teaching Maltese as a second language (ML2) to adult learners. By employing a qualitative research approach, this study convenes a focus group comprising twenty-seven educators to delve into a range of visual culture techniques integrated within language instruction. The collected data is subjected to thematic analysis using NVivo software. The findings underscore a variety of impactful visual culture techniques, encompassing activities such as drawing, sketching, interactive matching games, orthographic mapping, memory palace strategies, wordless picture books, picture-centered learning methodologies, infographics, Face Memory Game, Spot the Difference, Word Search Puzzles, the Hidden Object Game, educational videos, the Shadow Matching technique, Find the Differences exercises, and color-coded methodologies. These identified techniques hold potential for application within ML2 classes for adult learners. Consequently, this study not only provides insights into optimizing language learning through specific visual culture strategies but also furnishes practical recommendations for enhancing language competencies and skills.Keywords: visual culture, right-brain strategies, second language acquisition, maltese as a second language, visual aids, language-based activities
Procedia PDF Downloads 666506 Analyzing Classroom Interaction Patterns across Disciplines in Nigerian Universities: Insights from the Teaching Dimension Observation Protocol
Authors: Edidiong Enyeneokpon Ukoh, Olutayo Toyin Omole
Abstract:
This study investigates classroom interaction patterns across various academic disciplines in Nigerian universities, utilizing the Teaching Dimension Observation Protocol (TDOP) as a primary instrument for data collection. A survey-type non-experimental research design was employed, incorporating a multi-stage sampling approach to ensure representation from diverse faculties, including agriculture, education, engineering, medicine, science, social sciences, and humanities. The findings reveal significant differences in teaching methods, with traditional lectures dominating in technical fields such as science and engineering, while non-technical fields like social sciences and arts exhibit greater engagement with interactive teaching strategies. The results highlight a concerning trend of passive learning environments that may hinder the development of critical skills necessary for graduates' employability. This study underscores the urgent need for Nigerian universities to reassess their pedagogical approaches and adopt more interactive methods that foster active learning. Recommendations include promoting discipline-specific training for educators, implementing regular assessments of teaching practices, and strengthening partnerships with industry stakeholders to align educational outcomes with workforce demands. By embracing these changes, universities can enhance student engagement and contribute effectively to national development through the cultivation of a skilled workforce.Keywords: classroom interaction patterns, Nigerian universities, teaching dimension observation protocol, active learning, pedagogical approaches
Procedia PDF Downloads 136505 Perceived Physical Exercise Benefits among Staff of Tertiary Institutions in Adamawa State
Authors: Salihu Mohammed Umar
Abstract:
Perceived physical exercise benefits among staff of tertiary institutions in Adamawa State was investigated as a basis for formulating proper exercise intervention strategies. The study utilized descriptive survey design. The purpose of the study was to determine perceived exercise benefits among staff of tertiary institutions in Adamawa state, Nigeria. The instrument used for data collection was a questionnaire adapted from Exercise Benefit/Barrier Scale (EBBS) developed by Sechrist, Walker and Pender (1985) which was validated by five experts. Three hundred and thirty (330) copies of the questionnaire were distributed among study participants in six institutions of higher learning in Adamawa state. The scale comprised two components; Benefits and Barriers dimensions. To achieve this purpose, three research questions were posed. The instrument had a four response forced-choice Likert-type format with responses ranging from 4 = strongly agree (SA), 3 = Agree (A), 2 = Disagree (D) and 1 = Strongly Disagree (SD). The findings of the study revealed that both male and female staff in institutions of higher learning in Adamawa state perceived exercise as highly beneficial. However, male staff had higher perceived benefits score than their female counterparts. (Male: x̄ = 95.02. SD = 3.08) > female: x̄ = 94.04, SD = 4.35. There was also no significant difference in perceived exercise barriers between staff and students of tertiary institutions in Adamawa state. Based on the finding of the study, it was concluded that staff of tertiary institutions perceived exercise as highly beneficial. It was recommended that since staff of institutions of higher learning in Adamawa State irrespective of gender and religious affiliations have basic knowledge of perceived benefits of exercise, there is the need to explore programmes that will enable staff across the sub-groups to overcome barriers that could discourage physical exercise participation.Keywords: perception, physical exercise, staff, benefits
Procedia PDF Downloads 3216504 Municipal-Level Gender Norms: Measurement and Effects on Women in Politics
Authors: Luisa Carrer, Lorenzo De Masi
Abstract:
In this paper, we exploit the massive amount of information from Facebook to build a measure of gender attitudes in Italy at a previously impossible resolution—the municipal level. We construct our index via a machine learning method to replicate a benchmark region-level measure. Interestingly, we find that most of the variation in our Gender Norms Index (GNI) is across towns within narrowly defined geographical areas rather than across regions or provinces. In a second step, we show how this local variation in norms can be leveraged for identification purposes. In particular, we use our index to investigate whether these differences in norms carry over to the policy activity of politicians elected in the Italian Parliament. We document that females are more likely to sit in parliamentary committees focused on gender-sensitive matters, labor, and social issues, but not if they come from a relatively conservative town. These effects are robust to conditioning the legislative term and electoral district, suggesting the importance of social norms in shaping legislators’ policy activity.Keywords: gender equality, gender norms index, Facebook, machine learning, politics
Procedia PDF Downloads 836503 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1646502 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 276501 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors
Authors: Saeed Vahedikamal, Ian Hepburn
Abstract:
Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID
Procedia PDF Downloads 1006500 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry
Authors: Samuel Ntsanwisi
Abstract:
This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning
Procedia PDF Downloads 656499 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1236498 Agricultural Extension Workers’ Education in Indonesia - Roles of Distance Education
Authors: Adhi Susilo
Abstract:
This paper addresses the roles of distance education in the agricultural extension workers’ education. Agriculture plays an important role in both poverty reduction and economic growth. The technology of agriculture in the developing world should change continuously to keep pace with rising populations and rapidly changing social, economic, and environmental conditions. Therefore, agricultural extension workers should have several competencies in order to carry out their duties properly. One of the essential competencies that they must possess is the professional competency that is directly related to their duties in carrying out extension activities. Such competency can be acquired through studying at Universitas Terbuka (UT). With its distance learning system, agricultural extension workers can study at UT without leaving their duties. This paper presenting sociological analysis and lessons learnt from the specific context of Indonesia. Diversities in geographic, demographic, social cultural and economic conditions of the country provide specific challenges for its distance education practice and the process of social transformation to which distance education can contribute. Extension officers used distance education for personal benefits and increased professional productivity. An increase in awareness is important for the further adoption of distance learning for extension purposes. Organizations in both the public and private sector must work to increase knowledge of ICTs for the benefit of stakeholders. The use of ICTs can increase productivity for extensions officers and expand educational opportunities for learners. The use of distance education by extension to disseminate educational materials around the world is widespread. Increasing awareness and use of distance learning can lead to more productive relationships between extension officers and agricultural stakeholders.Keywords: agricultural extension, demographic and geographic condition, distance education, ICTs
Procedia PDF Downloads 5226497 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example
Abstract:
With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation
Procedia PDF Downloads 1196496 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 1416495 Eco-Parcel As a Semi-Qualitative Approach to Support Environmental Impacts Assessments in Nature-Based Tourism Destinations
Authors: Halima Kilungu, Pantaleo, K. T. Munishi
Abstract:
Climate and land-cover change affect nature-based tourism (NBT) due to its attractions' close connection to natural environments and climate. Thus, knowledge of how each attraction reacts to the changing environments and devising simple yet science based approaches to respond to these changes from a tourism perspective in space and time is timely. Nevertheless, no specific approaches exist to address the knowledge gap. The eco-parcel approach is devised to address the gap and operationalized in Serengeti and Kilimanjaro National Parks: the most climate-sensitive NBT destinations in Africa. The approach is partly descriptive and has three simple steps: (1) to identify and define tourist attractions (i.e. biotic and abiotic attractions). This creates an important database of the most poorly kept information on attractions' types in NBT destinations. (2) To create a spatial and temporal link of each attraction and describe its characteristic environments (e.g. vegetation, soil, water and rock outcrops). This is the most limited attractions' information yet important as a proxy of changes in attractions. (3) To assess the importance of individual attractions for tourism based on tourists' preferences. This information enables an accurate assessment of the value of individual attractions for tourism. The importance of the eco-parcel approach is that it describes how each attraction emerges from and is connected to specific environments, which define its attractiveness in space and time. This information allows accurate assessment of the likely losses or gains of individual attractions when climate or environment changes in specific destinations and equips tourism stakeholders with informed responses.Keywords: climate change, environmental change, nature-based tourism, Serengeti National Park, Kilimanjaro National Park
Procedia PDF Downloads 1266494 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1496493 Traditional Practices of Conserving Biodiversity: A Case Study around Jim Corbett National Park, Uttarakhand, India
Authors: Rana Parween, Rob Marchant
Abstract:
With the continued loss of global biodiversity despite the application of modern conservation techniques, it has become crucial to investigate non-conventional methods. Accelerated destruction of ecosystems due to altered land use, climate change, cultural and social change, necessitates the exploration of society-biodiversity attitudes and links. While the loss of species and their extinction is a well-known and well-documented process that attracts much-needed attention from researchers, academics, government and non-governmental organizations, the loss of traditional ecological knowledge and practices is more insidious and goes unnoticed. The growing availability of 'indirect experiences' such as the internet and media are leading to a disaffection towards nature and the 'Extinction of Experience'. Exacerbated by the lack of documentation of traditional practices and skills, there is the possibility for the 'extinction' of traditional practices and skills before they are fully recognized and captured. India, as a mega-biodiverse country, is also known for its historical conservation strategies entwined in traditional beliefs. Indigenous communities hold skillsets, knowledge, and traditions that have accumulated over multiple generations and may play an important role in conserving biodiversity today. This study explores the differences in knowledge and attitudes towards conserving biodiversity, of three different stakeholder groups living around Jim Corbett National Park, based on their age, traditions, and association with the protected area. A triangulation designed multi-strategy investigation collected qualitative and quantitative data through a questionnaire survey of village elders, the general public, and forest officers. Following an inductive approach to analyzing qualitative data, the thematic content analysis was followed. All coding and analysis were completed using NVivo 11. Although the village elders and some general public had vast amounts of traditional knowledge, most of it was related to animal husbandry and the medicinal value of plants. Village elders were unfamiliar with the concept of the term ‘biodiversity’ albeit their way of life and attitudes ensured that they care for the ecosystem without having the scientific basis underpinning biodiversity conservation. Inherently, village elders were keen to conserve nature; the superimposition of governmental policies without any tangible benefit or consultation was seen as detrimental. Alienating villagers and consequently the village elders who are the reservoirs of traditional knowledge would not only be damaging to the social network of the area but would also disdain years of tried and tested techniques held by the elders. Forest officers advocated for biodiversity and conservation education for women and children. Women, across all groups, when questioned about nature conservation, showed more interest in learning and participation. Biodiversity not only has an ethical and cultural value, but also plays a role in ecosystem function and, thus, provides ecosystem services and supports livelihoods. Therefore, underpinning and using traditional knowledge and incorporating them into programs of biodiversity conservation should be explored with a sense of urgency.Keywords: biological diversity, mega-biodiverse countries, traditional ecological knowledge, society-biodiversity links
Procedia PDF Downloads 1116492 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling
Procedia PDF Downloads 5046491 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas
Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad
Abstract:
A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture
Procedia PDF Downloads 4036490 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 1276489 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 340