Search results for: backtracking search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5188

Search results for: backtracking search algorithm

418 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology

Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal

Abstract:

Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.

Keywords: urology, surgical innovation, novel surgical techniques, publications

Procedia PDF Downloads 49
417 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis

Authors: Srinaath Anbu Durai, Wang Zhaoxia

Abstract:

Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.

Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks

Procedia PDF Downloads 116
416 Feasibility and Acceptability of Mindfulness-Based Cognitive Therapy in People with Depression and Cardiovascular Disorders: A Feasibility Randomised Controlled Trial

Authors: Modi Alsubaie, Chris Dickens, Barnaby Dunn, Andy Gibson, Obioha Ukoumunned, Alison Evans, Rachael Vicary, Manish Gandhi, Willem Kuyken

Abstract:

Background: Depression co-occurs in 20% of people with cardiovascular disorders, can persist for years and predicts worse physical health outcomes. While psychosocial treatments have been shown to effectively treat acute depression in those with comorbid cardiovascular disorders, to date there has been no evaluation of approaches aiming to prevent relapse and treat residual depression symptoms in this group. Therefore, the current study aimed to examine the feasibility and acceptability of a randomised controlled trial design evaluating an adapted version of mindfulness-based cognitive therapy (MBCT) designed specifically for people with co-morbid depression and cardiovascular disorders. Methods: A 3-arm feasibility randomised controlled trial was conducted, comparing MBCT adapted for people with cardiovascular disorders plus treatment as usual (TAU), mindfulness-based stress reduction (MBSR) plus TAU, and TAU alone. Participants completed a set of self-report measures of depression severity, anxiety, quality of life, illness perceptions, mindfulness, self-compassion and affect and had their blood pressure taken immediately before, immediately after, and three months following the intervention. Those in the adapted-MBCT arm additionally underwent a qualitative interview to gather their views about the adapted intervention. Results: 3400 potentially eligible participants were approached when attending an outpatient appointment at a cardiology clinic or via a GP letter following a case note search. 242 (7.1%) were interested in taking part, 59 (1.7%) were screened as being suitable, and 33 (<1%) were eventually randomised to the three groups. The sample was heterogeneous in terms of whether they reported current depression or had a history of depression and the time since the onset of cardiovascular disease (one to 25 years). Of 11 participants randomised to adapted MBCT seven completed the full course, levels of home mindfulness practice were high, and positive qualitative feedback about the intervention was given. Twenty-nine out of 33 participants randomised completed all the assessment measures at all three-time points. With regards to the primary outcome (depression), five out of the seven people who completed the adapted MBCT and three out of five under MBSR showed significant clinical change, while in TAU no one showed any clinical change at the three-month follow-up. Conclusions: The adapted MBCT intervention was feasible and acceptable to participants. However, aspects of the trial design were not feasible. In particular, low recruitment rates were achieved, and there was a high withdrawal rate between screening and randomisation. Moreover, the heterogeneity in the sample was high meaning the adapted intervention was unlikely to be well tailored to all participants needs. This suggests that if the decision is made to move to a definitive trial, study recruitment procedures will need to be revised to more successfully recruit a target sample that optimally matches the adapted intervention.

Keywords: mindfulness-based cognitive therapy (MBCT), depression, cardiovascular disorders, feasibility, acceptability

Procedia PDF Downloads 218
415 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 84
414 Combine Resection of Talocalcaneal Tarsal Coalition and Calcaneal Lengthening Osteotomy. Short-to-Intermediate Term Results

Authors: Naum Simanovsky, Vladimir Goldman, Michael Zaidman

Abstract:

Background: The optimal algorithm for the management of symptomatic tarsal coalition is still under discussion in pediatric literature. It's debatable what surgical steps are essential to achieve the best outcome. Method: The investigators retrospectively reviewed the records of twelve patients with symptomatic tarsal coalition that were treated operatively between 2017 and 2019. Only painful flat feet were operated. Two patients were excluded from the study due to lack of sufficient follow-up. Ten of eleven feet were treated with the combination of calcaneal lengthening osteotomy (CLO) and resection of coalition (RC). Only one foot was operated with CLO alone. In half of our patients, Achilles lengthening was performed. For two children, medial plication was added. Short leg cast was applied to all children for 6-8 weeks, and soft shoe insoles for medial arch support were prescribed after. Demographic, clinical, and radiographic records were reviewed. The outcome was evaluated using American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results: There were seven boys and three girls. The mean age at the time of surgery was 13.9 (range 12 to 17) years, and the mean follow-up was 18 (range 8 to 34) months. The early complications included one superficial wound infection and dehiscence. Late complication includes two children with residual forefoot supination. None of our patients required additional operations during the follow-up period. All feet achieved complete deformity correction or dramatic improvement. In the last follow-up, seven feet were painless, and four children had some mild pain after intensive activities. All feet achieved excellent and good scoring on AOFAS. Conclusions: Many patients with talocalcaneal coalition also have rigid or stiff, painful, flat feet. For these patients, the resection of coalition with concomitant CLO can be safely recommended.

Keywords: Tarsal coalition, calcaneal lengthening osteotomy., flat foot, coalition resection

Procedia PDF Downloads 65
413 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 283
412 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms

Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano

Abstract:

In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.

Keywords: heuristic, MIP model, remedial course, school, timetabling

Procedia PDF Downloads 605
411 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 157
410 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
409 GBKMeans: A Genetic Based K-Means Applied to the Capacitated Planning of Reading Units

Authors: Anderson S. Fonseca, Italo F. S. Da Silva, Robert D. A. Santos, Mayara G. Da Silva, Pedro H. C. Vieira, Antonio M. S. Sobrinho, Victor H. B. Lemos, Petterson S. Diniz, Anselmo C. Paiva, Eliana M. G. Monteiro

Abstract:

In Brazil, the National Electric Energy Agency (ANEEL) establishes that electrical energy companies are responsible for measuring and billing their customers. Among these regulations, it’s defined that a company must bill your customers within 27-33 days. If a relocation or a change of period is required, the consumer must be notified in writing, in advance of a billing period. To make it easier to organize a workday’s measurements, these companies create a reading plan. These plans consist of grouping customers into reading groups, which are visited by an employee responsible for measuring consumption and billing. The creation process of a plan efficiently and optimally is a capacitated clustering problem with constraints related to homogeneity and compactness, that is, the employee’s working load and the geographical position of the consuming unit. This process is a work done manually by several experts who have experience in the geographic formation of the region, which takes a large number of days to complete the final planning, and because it’s human activity, there is no guarantee of finding the best optimization for planning. In this paper, the GBKMeans method presents a technique based on K-Means and genetic algorithms for creating a capacitated cluster that respects the constraints established in an efficient and balanced manner, that minimizes the cost of relocating consumer units and the time required for final planning creation. The results obtained by the presented method are compared with the current planning of a real city, showing an improvement of 54.71% in the standard deviation of working load and 11.97% in the compactness of the groups.

Keywords: capacitated clustering, k-means, genetic algorithm, districting problems

Procedia PDF Downloads 198
408 Understanding the Role of Social Entrepreneurship in Building Mobility of a Service Transportation Models

Authors: Liam Fassam, Pouria Liravi, Jacquie Bridgman

Abstract:

Introduction: The way we travel is rapidly changing, car ownership and use are declining among young people and those residents in urban areas. Also, the increasing role and popularity of sharing economy companies like Uber highlight a movement towards consuming transportation solutions as a service [Mobility of a Service]. This research looks to bridge the knowledge gap that exists between city mobility, smart cities, sharing economy and social entrepreneurship business models. Understanding of this subject is crucial for smart city design, as access to affordable transport has been identified as a contributing factor to social isolation leading to issues around health and wellbeing. Methodology: To explore the current fit vis-a-vis transportation business models and social impact this research undertook a comparative analysis between a systematic literature review and a Delphi study. The systematic literature review was undertaken to gain an appreciation of the current academic thinking on ‘social entrepreneurship and smart city mobility’. The second phase of the research initiated a Delphi study across a group of 22 participants to review future opinion on ‘how social entrepreneurship can assist city mobility sharing models?’. The Delphi delivered an initial 220 results, which once cross-checked for duplication resulted in 130. These 130 answers were sent back to participants to score importance against a 5-point LIKERT scale, enabling a top 10 listing of areas for shared user transports in society to be gleaned. One further round (4) identified no change in the coefficient of variant thus no further rounds were required. Findings: Initial results of the literature review returned 1,021 journals using the search criteria ‘social entrepreneurship and smart city mobility’. Filtering allied to ‘peer review’, ‘date’, ‘region’ and ‘Chartered associated of business school’ ranking proffered a resultant journal list of 75. Of these, 58 focused on smart city design, 9 on social enterprise in cityscapes, 6 relating to smart city network design and 3 on social impact, with no journals purporting the need for social entrepreneurship to be allied to city mobility. The future inclusion factors from the Delphi expert panel indicated that smart cities needed to include shared economy models in their strategies. Furthermore, social isolation born by costs of infrastructure needed addressing through holistic A-political social enterprise models, and a better understanding of social benefit measurement is needed. Conclusion: In investigating the collaboration between key public transportation stakeholders, a theoretical model of social enterprise transportation models that positively impact upon the smart city needs of reduced transport poverty and social isolation was formed. As such, the research has identified how a revised business model of Mobility of a Service allied to a social entrepreneurship can deliver impactful measured social benefits associated to smart city design existent research.

Keywords: social enterprise, collaborative transportation, new models of ownership, transport social impact

Procedia PDF Downloads 140
407 Melancholia, Nostalgia: Bernardo Soares after Fernando Pessoa

Authors: Maria de Fátima Lambert

Abstract:

Bernardo Soares is one of Fernando Pessoa' several heteronyms (and "half-heteronyms"). Perhaps the one that brought together the majority of his qualities and characters of self-identity within the famous inner-persona-alter-diversity. The Book of Disquiet by Bernardo Soares was released in 1983, consisting of ontological remarks caught by an obsessive inquiring about self-existence. The book became a highly valuable substance when focusing upon the philosophical grounds of Pessoa's aesthetics. For sure, we cannot consider a single aesthetic, admitting that each heteronym has its own particular one, developed after different principles and convictions. Regarding Bernardo Soares, his thought arises from sequenced self-clues expressing peculiar existential doubtless presented as certainties -and vice-versa. His written self-search-images are reported, molding the painful awareness of existence through the discredited tolerance of any conclusive dialogue with others. Given the nature of Soares’ [maybe] unfinished writings, it is obvious that he headed far from his self-insurance-capsule: the office, bedroom, or even the walkscapes through Lisbon. The idea of travel/journey is one of the most relevant when recognizing his profound - although undercover - anguish as melancholy and nostalgia. In Bernardo Soares, Aesthetics is taken agonizingly, grounded upon discreet poetic phraseology and terms. His poetical awareness developed compulsive titles such "Aesthetics of Indifference", "Aesthetics of Discouragement". Soares' Aesthetics emerges directly from oneself, understanding art as inner acts and living experienced issues. Art is not freed from the intellectual expression of oneself emotions. The Disquiet Book is an existential nightmare nourished by everyday life, single written thoughts, balanced by melancholia, nostalgia, and distress. One might wonder if it was dreams that guided his fictional literary persona or the narrow facts of life itself. Along with his endless disquiet writing, Pessoa’s semi-heteronymous traveled without physically going anywhere. The complexity of inner existence is fulfilled by lonely mental walks and travels, as in two texts titled The Never Accomplished Journey. Although we also can consider other fragments, these are the deepest reflections about travelling. Let’s recall that Fernando Pessoa’s ortonyms writings -poems and essays- also addressed this issue from a philosophical perspective. We believe that this theme is one of the meaningful concepts for featuring the main principles of his aesthetics. As we know, Fernando Pessoa did not travel to foreign countries (or in Portugal), except for the journey, with his family, from Lisbon to South Africa (as a child) and, some years later, the return back to Lisbon. One may wonder why the poet never undertook other journeys. Maybe due to a disbelief in moving away from his comfort zone or due to the fear of becoming addicted to endless travels and the loss of his convenient self-closeness. In The Book of Disquiet, the poet shared his internal visions of the outer world but mainly visualizing his deepest enigmas and experiences -so strongly incorporated into reality and fiction.

Keywords: aesthetic principles, Bernardo Soares, Fernando Pessoa , melancholia, nostalgia, non-accomplished travel, The Book of Disquiet

Procedia PDF Downloads 130
406 The Philosophical Hermeneutics Contribution to Form a Highly Qualified Judiciary in Brazil

Authors: Thiago R. Pereira

Abstract:

The philosophical hermeneutics is able to change the Brazilian Judiciary because of the understanding of the characteristics of the human being. It is impossible for humans, to be invested in the function of being a judge, making absolutely neutral decisions, but the philosophical hermeneutics can assist the judge making impartial decisions, based on the federal constitution. The normative legal positivism imagined a neutral judge, a judge able to try without any preconceived ideas, without allowing his/her background to influence him/her. When a judge arbitrates based on legal rules, the problem is smaller, but when there are no clear legal rules, and the judge must try based on principles, the risk of the decision is based on what they believe in. Solipsistically, this issue gains a huge dimension. Today, the Brazilian judiciary is independent, but there must be a greater knowledge of philosophy and the philosophy of law, partially because the bigger problem is the unpredictability of decisions made by the judiciary. Actually, when a lawsuit is filed, the result of this judgment is absolutely unpredictable. It is almost a gamble. There must be the slightest legal certainty and predictability of judicial decisions, so that people, with similar cases, may not receive opposite sentences. The relativism, since classical antiquity, believes in the possibility of multiple answers. Since the Greeks in in the sixth century before Christ, through the Germans in the eighteenth century, and even today, it has been established the constitution as the great law, the Groundnorm, and thus, the relativism of life can be greatly reduced when a hermeneut uses the Constitution as North interpretational, where all interpretation must act as the hermeneutic constitutional filter. For a current philosophy of law, that inside a legal system with a Federal Constitution, there is a single correct answer to a specific case. The challenge is how to find this right answer. The only answer to this question will be that we should use the constitutional principles. But in many cases, a collision between principles will take place, and to resolve this issue, the judge or the hermeneut will choose a solipsism way, using what they personally believe to be the right one. For obvious reasons, that conduct is not safe. Thus, a theory of decision is necessary to seek justice, and the hermeneutic philosophy and the linguistic turn will be necessary for one to find the right answer. In order to help this difficult mission, it will be necessary to use philosophical hermeneutics in order to find the right answer, which is the constitutionally most appropriate response. The constitutionally appropriate response will not always be the answer that individuals agree to, but we must put aside our preferences and defend the answer that the Constitution gives us. Therefore, the hermeneutics applied to Law, in search constitutionally appropriate response, should be the safest way to avoid judicial individual decisions. The aim of this paper is to present the science of law starting from the linguistic turn, the philosophical hermeneutics, moving away from legal positivism. The methodology used in this paper is qualitative, academic and theoretical, philosophical hermeneutics with the mission to conduct research proposing a new way of thinking about the science of law. The research sought to demonstrate the difficulty of the Brazilian courts to depart from the secular influence of legal positivism. Moreover, the research sought to demonstrate the need to think science of law within a contemporary perspective, where the linguistic turn, philosophical hermeneutics, will be the surest way to conduct the science of law in the present century.

Keywords: hermeneutic, right answer, solipsism, Brazilian judiciary

Procedia PDF Downloads 350
405 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 133
404 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 410
403 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
402 Prevalence of Pretreatment Drug HIV-1 Mutations in Moscow, Russia

Authors: Daria Zabolotnaya, Svetlana Degtyareva, Veronika Kanestri, Danila Konnov

Abstract:

An adequate choice of the initial antiretroviral treatment determines the treatment efficacy. In the clinical guidelines in Russia non-nucleoside reverse transcriptase inhibitors (NNRTIs) are still considered to be an option for first-line treatment while pretreatment drug resistance (PDR) testing is not routinely performed. We conducted a cohort retrospective study in HIV-positive treatment naïve patients of the H-clinic (Moscow, Russia) who performed PDR testing from July 2017 to November 2021. All the information was obtained from the medical records anonymously. We analyzed the mutations in reverse transcriptase and protease genes. RT-sequences were obtained by AmpliSens HIV-Resist-Seq kit. Drug resistance was defined using the HIVdb Program v. 8.9-1. PDR was estimated using the Stanford algorithm. Descriptive statistics were performed in Excel (Microsoft Office, 2019). A total of 261 HIV-1 infected patients were enrolled in the study including 197 (75.5%) male and 64 (24.5%) female. The mean age was 34.6±8.3 years. The median CD4 count – 521 cells/µl (IQR 367-687 cells/µl). Data on risk factors of HIV-infection were scarce. The total quantity of strains containing mutations in the reverse transcriptase gene was 75 (28.7%). From these 5 (1.9%) mutations were associated with PDR to nucleoside reverse transcriptase inhibitors (NRTIs) and 30 (11.5%) – with PDR to NNRTIs. The number of strains with mutations in protease gene was 43 (16.5%), from these only 3 (1.1%) mutations were associated with resistance to protease inhibitors. For NNRTIs the most prevalent PDR mutations were E138A, V106I. Most of the HIV variants exhibited a single PDR mutation, 2 were found in 3 samples. Most of HIV variants with PDR mutation displayed a single drug class resistance mutation. 2/37 (5.4%) strains had both NRTIs and NNRTIs mutations. There were no strains identified with PDR mutations to all three drug classes. Though earlier data demonstrated a lower level of PDR in HIV treatment naïve population in Russia and our cohort can be not fully representative as it is taken from the private clinic, it reflects the trend of increasing PDR especially to NNRTIs. Therefore, we consider either pretreatment testing or giving the priority to other drugs as first-line treatment necessary.

Keywords: HIV, resistance, mutations, treatment

Procedia PDF Downloads 93
401 How Whatsappization of the Chatbot Affects User Satisfaction, Trust, and Acceptance in a Drive-Sharing Task

Authors: Nirit Gavish, Rotem Halutz, Liad Neta

Abstract:

Nowadays, chatbots are gaining more and more attention due to the advent of large language models. One of the important considerations in chatbot design is how to create an interface to achieve high user satisfaction, trust, and acceptance. Since WhatsApp conversations sometimes substitute for face-to-face communication, we studied whether WhatsAppization of the chatbot -making the conversation resemble a WhatsApp conversation more- will improve user satisfaction, trust, and acceptance, or whether the opposite will occur due to the Uncanny Valley (UV) effect. The task was a drive-sharing task, in which participants communicated with a textual chatbot via WhatsApp and could decide whether to participate in a ride to college with a driver suggested by the chatbot. WhatsAppization of the chatbot was done in two ways: By a dialog-style conversation (Dialog versus No Dialog), and by adding WhatsApp indicators – “Last Seen”, “Connected”, “Read Receipts”, and “Typing…” (Indicators versus No Indicators). Our 120 participants were randomly assigned to one of the four 2 by 2 design groups, with 30 participants in each. They interacted with the WhatsApp chatbot and then filled out a questionnaire. The results demonstrated that, as expected from the manipulation, the interaction with the chatbot was longer for the dialog condition compared to the no dialog. This extra interaction, however, did not lead to higher acceptance -quite the opposite, since participants in the dialog condition were less willing to implement the decision made at the end of the conversation with the chatbot and continue the interaction with the driver they chose. The results are even more striking when considering the Indicators condition. Both for the satisfaction measures and the trust measures, participants’ ratings were lower in the Indicators condition compared to the No Indicators. Participants in the Indicators condition felt that the ride search process was harder to operate, and slower (even though the actual interaction time was similar). They were less convinced that the chatbot suggested real trips and they trusted the person offering the ride and referred to them by the chatbot less. These effects were more evident for participants who preferred to share their rides using WhatsApp compared to participants who preferred chatbots for that purpose. Considering our findings, we can say that the WhatsAppization of the chatbot was detrimental. This is true for the both chatbot WhatsAppization methods – by making the conversation more a dialog and adding WhatsApp indicators. For the chosen drive-sharing task, the results were, in addition to lower satisfaction, less trust in the chatbot’s suggestion and even in the driver suggested by the chatbot, and lower willingness to actually undertake the suggested ride. In addition, it seems that the most problematic WhatsAppization method was using WhatsApp’s indicators during the interaction with the chatbot. The current study suggests that a conversation with an artificial agent should also not imitate a WhatsApp conversation very closely. With the proliferation of WhatsApp use, the emotional and social aspect of face-to face commination are moving to WhatsApp communication. Based on the current study’s findings, it is possible that the UV effect also occurs in WhatsAppization, and not only in humanization, of the chatbot, with a similar feeling of eeriness, and is more pronounced for people who prefer to use WhatsApp over chatbots. The current research can serve as a starting point to study the very interesting and important topic of chatbots WhatsAppization. More methods of WhatsAppization and other tasks could be the focus of further studies.

Keywords: chatbot, WhatsApp, humanization, Uncanny Valley, drive sharing

Procedia PDF Downloads 48
400 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 317
399 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach

Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic

Abstract:

The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.

Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning

Procedia PDF Downloads 185
398 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: darrieus wind turbine, VAWT, NACA airfoil, performance

Procedia PDF Downloads 373
397 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis

Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin

Abstract:

Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.

Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis

Procedia PDF Downloads 263
396 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 251
395 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 281
394 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design

Authors: Ling Liyun

Abstract:

In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.

Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 136
393 Evaluation of Correct Usage, Comfort and Fit of Personal Protective Equipment in Construction Work

Authors: Anna-Lisa Osvalder, Jonas Borell

Abstract:

There are several reasons behind the use, non-use, or inadequate use of personal protective equipment (PPE) in the construction industry. Comfort and accurate size support proper use, while discomfort, misfit, and difficulties to understand how the PPEs should be handled inhibit correct usage. The need for several protective equipments simultaneously might also create problems. The purpose of this study was to analyse the correct usage, comfort, and fit of different types of PPEs used for construction work. Correct usage was analysed as guessability, i.e., human perceptions of how to don, adjust, use, and doff the equipment, and if used as intended. The PPEs tested individually or in combinations were a helmet, ear protectors, goggles, respiratory masks, gloves, protective cloths, and safety harnesses. First, an analytical evaluation was performed with ECW (enhanced cognitive walkthrough) and PUEA (predictive use error analysis) to search for usability problems and use errors during handling and use. Then usability tests were conducted to evaluate guessability, comfort, and fit with 10 test subjects of different heights and body constitutions. The tests included observations during donning, five different outdoor work tasks, and doffing. The think-aloud method, short interviews, and subjective estimations were performed. The analytical evaluation showed that some usability problems and use errors arise during donning and doffing, but with minor severity, mostly causing discomfort. A few use errors and usability problems arose for the safety harness, especially for novices, where some could lead to a high risk of severe incidents. The usability tests showed that discomfort arose for all test subjects when using a combination of PPEs, increasing over time. For instance, goggles, together with the face mask, caused pressure, chafing at the nose, and heat rash on the face. This combination also limited sight of vision. The helmet, in combination with the goggles and ear protectors, did not fit well and caused uncomfortable pressure at the temples. No major problems were found with the individual fit of the PPEs. The ear protectors, goggles, and face masks could be adjusted for different head sizes. The guessability for how to don and wear the combination of PPE was moderate, but it took some time to adjust them for a good fit. The guessability was poor for the safety harness; few clues in the design showed how it should be donned, adjusted, or worn on the skeletal bones. Discomfort occurred when the straps were tightened too much. All straps could not be adjusted for somebody's constitutions leading to non-optimal safety. To conclude, if several types of PPEs are used together, discomfort leading to pain is likely to occur over time, which can lead to misuse, non-use, or reduced performance. If people who are not regular users should wear a safety harness correctly, the design needs to be improved for easier interpretation, correct position of the straps, and increased possibilities for individual adjustments. The results from this study can be a base for re-design ideas for PPE, especially when they should be used in combinations.

Keywords: construction work, PPE, personal protective equipment, misuse, guessability, usability

Procedia PDF Downloads 87
392 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 224
391 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 117
390 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 71
389 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou

Abstract:

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units

Procedia PDF Downloads 157