Search results for: voice recognition
1697 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 2301696 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition
Authors: J. K. Adedeji, S. T. Ijatuyi
Abstract:
The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.Keywords: gravitational resistance, neural network, non-linear, pattern recognition
Procedia PDF Downloads 2131695 Social Network Analysis, Social Power in Water Co-Management (Case Study: Iran, Shemiranat, Jirood Village)
Authors: Fariba Ebrahimi, Mehdi Ghorbani, Ali Salajegheh
Abstract:
Comprehensively water management considers economic, environmental, technical and social and also sustainability of water resources for future generations. Grassland management implies cooperative approach and involves all stakeholders and also introduces issues to managers, decision and policy makers. Solving these issues needs integrated and system approach. According to the recognition of actors or key persons in necessary to apply cooperative management of Water. Therefore, based on stakeholder analysis and social network analysis can be used to demonstrate the most effective actors for environmental decisions. In this research, social powers according are specified to social network approach at Water utilizers’ level of Natural in Jirood catchment of Latian basin. In this paper, utilizers of water resources were recognized using field trips and then, trust and collaboration matrix produced using questionnaires. In the next step, degree centrality index were Examined. Finally, geometric position of each actor was illustrated in the network. The results of the research based on centrality index have a key role in recognition of cooperative management of Water in Jirood and also will help managers and planners of water in the case of recognition of social powers in order to organization and implementation of sustainable management of Water.Keywords: social network analysis, water co-management, social power, centrality index, local stakeholders network, Jirood catchment
Procedia PDF Downloads 3721694 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4701693 Transcultural Study on Social Intelligence
Authors: Martha Serrano-Arias, Martha Frías-Armenta
Abstract:
Significant results have been found both supporting universality of emotion recognition and cultural background influence. Thus, the aim of this research was to test a Mexican version of the MTSI in different cultures to find differences in their performance. The MTSI-Mx assesses through a scenario approach were subjects must evaluate real persons. Two target persons were used for the construction, a man (FS) and a woman (AD). The items were grouped in four variables: Picture, Video, and FS and AD scenarios. The test was applied to 201 students from Mexico and Germany. T-test for picture and FS scenario show no significance. Video and AD had a significance at the 5% level. Results show slight differences between cultures, although a more comprehensive research is needed to conclude which culture can perform better in this kind of assessments.Keywords: emotion recognition, MTSI, social intelligence, transcultural study
Procedia PDF Downloads 3271692 Character Bioacoustics White-Rumped Shama Copsychus malabaricus as a Cage-Bird
Authors: Novia Liza Rahmawaty, Wilson Novarino, Muhammad Nazri Janra
Abstract:
Indonesian people love to keep songbird in cage to be competed, such as White-rumped Shama (Copsychus malabaricus). Each individual White-rumped Shama will be pitted their song and try to imitate the rhythm of the enemy with its songs. This study was conducted to see the natural song characters of White-rumped Shama and song character from birds that had been trained and comparison in three different places in West Sumatra. Individuals were recorded totaling 30 individuals in three areas in West Sumatra namely Padang, Solok and Pariaman and sound recordings of White-rumped Shama in nature were taken in HBW and Xenocanto website. Research has done conducted from June to October 2016 at place group practice of birdsongs and recorded at 16:00 to 18:00 pm. These voices were analyzed by Avisoft SAS-Lab Lite inform of oscillogram and sonogram. Measured parameters included: the length of voice, repertoire size, number of syllable type, syllable repertoire, and song repertoire. The results showed that repertoire composition of White-rumped Shama in nature less than the sound which was trained and has repeat songs composed by the same type of repertoire composition. Comparison of song character White-rumped Shama in three different places in West Sumatra, those birds in Solok had the best quality of voice or song than Padang and Pariaman. It showed by higher repertoire composition in Solok.Keywords: repertoire composition, song characters, songbird, white-rumped shama
Procedia PDF Downloads 3281691 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors
Authors: Darshna Sharma, Suban K. Sahoo
Abstract:
The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT
Procedia PDF Downloads 4021690 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences
Authors: T. Hari Prasath, P. Ithaya Rani
Abstract:
In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization
Procedia PDF Downloads 2801689 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition
Procedia PDF Downloads 2781688 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms
Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan
Abstract:
This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.Keywords: binary classifier, CNN, spectrogram, instrument
Procedia PDF Downloads 851687 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 3761686 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation
Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira
Abstract:
We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification
Procedia PDF Downloads 491685 A Functional Analysis of a Political Leader in Terms of Marketing
Authors: Aşina Gülerarslan, M. Faik Özdengül
Abstract:
The new economic, social and political world order has led to the emergence of a wide range of persuasion strategies and practices based on an ever expanding marketing axis that involves organizations, ideas and persons as well as products and services. It is seen that since the 1990's, a wide variety of competitive marketing ideas have been offered systematically to target audiences in the field of politics as in other fields. When the components of marketing are taken into consideration, all kinds of communication efforts involving “political leaders”, who are conceptualized as products in terms of political marketing, serve a process of social persuasion, which cannot be restricted to election periods only, and a manageable “image”. In this context, image, which is concerned with how the political product is perceived, involves not only the political discourses shared with the public but also all kinds of biographical information about the leader, the leader’s specific way of living and routines and his/her attitudes and behaviors in their private lives, and all these are regarded as components of the “product image”. While on the one hand the leader’s verbal or supra-verbal references serve the way the “spirit of the product” is perceived –just as in brand positioning- they also show their self-esteem levels, in other words how they perceive themselves on the other hand. Indeed, their self-esteem levels are evaluated in three fundamental categories in the “Functional Analysis”, namely parent, child and adult, and it is revealed that the words, tone of voice and body language a person uses makes it easy to understand at what self-esteem level that person is. In this context, words, tone of voice and body language, which provide important clues as to the “self” of the person, are also an indication of how political leaders evaluate both “themselves” and “the mass/audience” in the communication they establish with their audiences. When the matter is taken from the perspective of Turkey, the levels of self-esteem in the relationships that the political leaders establish with the masses are also important in revealing how our society is seen from the perspective of a specific leader. Since the leader is a part of the marketing strategy of a political party as a product, this evaluation is significant in terms of the forms of relationships between political institutions in our country with the society. In this study, the self-esteem level in the documentary entitled “Master’s Story”, where Recep Tayyip Erdoğan’s life history is told, is analyzed in the context of words, tone of voice and body language. Within the scope of the study, at what level of self-esteem Recep Tayyip Erdoğan was in the “Master’s Story”, a documentary broadcast on Beyaz TV, was investigated using the content analysis method. First, based on the Functional Analysis Literature, a transactional approach scale was created regarding parent, adult and child self-esteem levels. On the basis of this scale, the prime minister’s self-esteem level was determined in three basic groups, namely “tone of voice”, “the words he used” and “body language”. Descriptive analyses were made to the data within the framework of these criteria and at what self-esteem level the prime minister spoke throughout the documentary was revealed.Keywords: political marketing, leader image, level of self-esteem, transactional approach
Procedia PDF Downloads 3401684 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 1321683 Ariettes Oublieés of Claude Debussy: An Interpretive Approach of Two Songs of the Composer’s Compilation through a Comparative Study of Four Contemporary Recordings
Authors: Giannaki Natalia
Abstract:
This study examines the songs compilation of Claude Debussy Ariettes Oublieés for voice and piano and especially the songs C’est l’extase langoureuse and Chevaux des bois of the compilation in order to present some interpretational suggestions for the singer and the piano accompanist for a more complete knowledge of the style of French singing of this period. First, the historical frame of the French song (in which this compilation is integrated) is introduced, as well as the historical frame of this work, and then, the most predominant interpretational parameters of the impressionistic French song are presented from testimonies of Claude Debussy and his contemporaries. Moreover, a brief analysis of the verses that turned into music by Debussy from the collection of poems by the famous French poet Paul Verlaine for subsequent interpretative suggestions is integrated into the research. The purpose of this work is not to elucidate the work from a harmonic or morphological point of view. Instead, this research primarily attempts to delve into performance issues through a comparison of four contemporary recordings of the work, from which it will be proved whether the principles of impressionism that were established are respected and how they affect these songs, as well as how much the personal viewpoint of each interpreter intervenes. The latter intends to fill the research gap in the interpretation of Debussy's songs and to guide the performers. To conclude, it will be discovered whether there is any recording closest to a French song’s interpretation principles and how a complete interpretation of a French song should be.Keywords: Ariettes Oublieés, Claude Debussy, comparison, French song, impressionism, interpretation, performance practice, music performance, piano, recordings, singing, voice
Procedia PDF Downloads 951682 Computer Science, Mass Communications, and Social Entrepreneurship: An Interdisciplinary Approach to Teaching Interactive Storytelling for the Greater Good
Authors: Susan Cardillo
Abstract:
This research will consider ways to bridge the gap between Computer Science and Media Communications and while doing so create Social Entrepreneurship for student success. New Media, as it has been referred to, is considered content available on-demand through Internet, a digital device, usually containing some kind of interactivity and creative participation. It is the interplay between technology, images, media and communications. The next generation of the newspaper, radio, television, and film students need to have a working knowledge of the technologies that are available for the creation of their work and taught to use this knowledge to create a voice. The work is interdisciplinary; in communications, we understand the necessity of reporting and disseminating information. In documentary film we understand the instructional and historic aspects of media and technology and in the non-profit sector, we see the need for expanding outlets for good. So, the true necessity is to utilize ‘new media’ technologies to advance social causes while reporting information, teaching and creating art. Goals: The goal of this research is to give communications students a better understanding of the technology that is both, currently at their disposal, and on the horizon, so that they can use it in their media, communications and art endeavors to be a voice for their generation. There is no longer a need to be a computer scientist to have a working knowledge of communication technologies and how they will benefit our work. There are many free and easy to use applications available for the creation of interactive communications. Methodology: This is Qualitative-Case Study that puts these ideas into action. There is a survey at the end of the experiment that is qualitative in nature and allows for the participants to share ideas and feelings about the technology and approach.Keywords: interactive storytelling, web documentary, mass communications, teaching
Procedia PDF Downloads 2811681 Effect of the Keyword Strategy on Lexical Semantic Acquisition: Recognition, Retention and Comprehension in an English as Second Language Context
Authors: Fatima Muhammad Shitu
Abstract:
This study seeks to investigate the effect of the keyword strategy on lexico–semantic acquisition, recognition, retention and comprehension in an ESL context. The aim of the study is to determine whether the keyword strategy can be used to enhance acquisition. As a quasi- experimental research, the objectives of the study include: To determine the extent to which the scores obtained by the subjects, who were trained on the use of the keyword strategy for acquisition, differ at the pre-tests and the post–tests and also to find out the relationship in the scores obtained at these tests levels. The sample for the study consists of 300 hundred undergraduate ESL Students in the Federal College of Education, Kano. The seventy-five lexical items for acquisition belong to the lexical field category known as register, and they include Medical, Agriculture and Photography registers (MAP). These were divided in the ratio twenty-five (25) lexical items in each lexical field. The testing technique was used to collect the data while the descriptive and inferential statistics were employed for data analysis. For the purpose of testing, the two kinds of tests administered at each test level include the WARRT (Word Acquisition, Recognition, and Retention Test) and the CCPT (Cloze Comprehension Passage Test). The results of the study revealed that there are significant differences in the scores obtained between the pre-tests, and the post–tests and there are no correlations in the scores obtained as well. This implies that the keyword strategy has effectively enhanced the acquisition of the lexical items studied.Keywords: keyword, lexical, semantics, strategy
Procedia PDF Downloads 3131680 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application
Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior
Abstract:
Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks
Procedia PDF Downloads 1711679 Facial Recognition of University Entrance Exam Candidates using FaceMatch Software in Iran
Authors: Mahshid Arabi
Abstract:
In recent years, remarkable advancements in the fields of artificial intelligence and machine learning have led to the development of facial recognition technologies. These technologies are now employed in a wide range of applications, including security, surveillance, healthcare, and education. In the field of education, the identification of university entrance exam candidates has been one of the fundamental challenges. Traditional methods such as using ID cards and handwritten signatures are not only inefficient and prone to fraud but also susceptible to errors. In this context, utilizing advanced technologies like facial recognition can be an effective and efficient solution to increase the accuracy and reliability of identity verification in entrance exams. This article examines the use of FaceMatch software for recognizing the faces of university entrance exam candidates in Iran. The main objective of this research is to evaluate the efficiency and accuracy of FaceMatch software in identifying university entrance exam candidates to prevent fraud and ensure the authenticity of individuals' identities. Additionally, this research investigates the advantages and challenges of using this technology in Iran's educational systems. This research was conducted using an experimental method and random sampling. In this study, 1000 university entrance exam candidates in Iran were selected as samples. The facial images of these candidates were processed and analyzed using FaceMatch software. The software's accuracy and efficiency were evaluated using various metrics, including accuracy rate, error rate, and processing time. The research results indicated that FaceMatch software could accurately identify candidates with a precision of 98.5%. The software's error rate was less than 1.5%, demonstrating its high efficiency in facial recognition. Additionally, the average processing time for each candidate's image was less than 2 seconds, indicating the software's high efficiency. Statistical evaluation of the results using precise statistical tests, including analysis of variance (ANOVA) and t-test, showed that the observed differences were significant, and the software's accuracy in identity verification is high. The findings of this research suggest that FaceMatch software can be effectively used as a tool for identifying university entrance exam candidates in Iran. This technology not only enhances security and prevents fraud but also simplifies and streamlines the exam administration process. However, challenges such as preserving candidates' privacy and the costs of implementation must also be considered. The use of facial recognition technology with FaceMatch software in Iran's educational systems can be an effective solution for preventing fraud and ensuring the authenticity of university entrance exam candidates' identities. Given the promising results of this research, it is recommended that this technology be more widely implemented and utilized in the country's educational systems.Keywords: facial recognition, FaceMatch software, Iran, university entrance exam
Procedia PDF Downloads 491678 Bedouin Dispersion in Israel: Between Sustainable Development and Social Non-Recognition
Authors: Tamir Michal
Abstract:
The subject of Bedouin dispersion has accompanied the State of Israel from the day of its establishment. From a legal point of view, this subject has offered a launchpad for creative judicial decisions. Thus, for example, the first court decision in Israel to recognize affirmative action (Avitan), dealt with a petition submitted by a Jew appealing the refusal of the State to recognize the Petitioner’s entitlement to the long-term lease of a plot designated for Bedouins. The Supreme Court dismissed the petition, holding that there existed a public interest in assisting Bedouin to establish permanent urban settlements, an interest which justifies giving them preference by selling them plots at subsidized prices. In another case (The Forum for Coexistence in the Negev) the Supreme Court extended equitable relief for the purpose of constructing a bridge, even though the construction infringed the Law, in order to allow the children of dispersed Bedouin to reach school. Against this background, the recent verdict, delivered during the Protective Edge military campaign, which dismissed a petition aimed at forcing the State to spread out Protective Structures in Bedouin villages in the Negev against the risk of being hit from missiles launched from Gaza (Abu Afash) is disappointing. Even if, in arguendo, no selective discrimination was involved in the State’s decision not to provide such protection, the decision, and its affirmation by the Court, is problematic when examined through the prism of the Theory of Recognition. The article analyses the issue by tools of theory of Recognition, according to which people develop their identities through mutual relations of recognition in different fields. In the social context, the path to recognition is cognitive respect, which is provided by means of legal rights. By seeing other participants in Society as bearers of rights and obligations, the individual develops an understanding of his legal condition as reflected in the attitude to others. Consequently, even if the Court’s decision may be justified on strict legal grounds, the fact that Jewish settlements were protected during the military operation, whereas Bedouin villages were not, is a setback in the struggle to make the Bedouin citizens with equal rights in Israeli society. As the Court held, ‘Beyond their protective function, the Migunit [Protective Structures] may make a moral and psychological contribution that should not be undervalued’. This contribution is one that the Bedouin did not receive in the Abu Afash verdict. The basic thesis is that the Court’s verdict analyzed above clearly demonstrates that the reliance on classical liberal instruments (e.g., equality) cannot secure full appreciation of all aspects of Bedouin life, and hence it can in fact prejudice them. Therefore, elements of the recognition theory should be added, in order to find the channel for cognitive dignity, thereby advancing the Bedouins’ ability to perceive themselves as equal human beings in the Israeli society.Keywords: bedouin dispersion, cognitive respect, recognition theory, sustainable development
Procedia PDF Downloads 3531677 American Sign Language Recognition System
Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba
Abstract:
The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.Keywords: sign language, computer vision, vision transformer, VGG16, CNN
Procedia PDF Downloads 441676 Understanding Europe’s Role in the Area of Liberty, Security, and Justice as an International Actor
Authors: Barrere Sarah
Abstract:
The area of liberty, security, and justice within the European Union is still a work in progress. No one can deny that the EU struggles between a monistic and a dualist approach. The aim of our essay is to first review how the European law is perceived by the rest of the international scene. It will then discuss two main mechanisms at play: the interpretation of larger international treaties and the penal mechanisms of European law. Finally, it will help us understand the role of a penal Europe on the international scene with concrete examples. Special attention will be paid to cases that deal with fundamental rights as they represent an interesting case study in Europe and in the rest of the World. It could illustrate the aforementioned duality currently present in the Union’s interpretation of international public law. On the other hand, it will explore some specific European penal mechanism through mutual recognition and the European arrest warrant in the transnational criminality frame. Concerning the interpretation of the treaties, it will first, underline the ambiguity and the general nature of some treaties that leave the EU exposed to tension and misunderstanding then it will review the validity of an EU act (whether or not it is compatible with the rules of International law). Finally, it will focus on the most complete manifestation of liberty, security and justice through the principle of mutual recognition. Used initially in commercial matters, it has become “the cornerstone” of European construction. It will see how it is applied in judicial decisions (its main event and achieving success is via the European arrest warrant) and how European member states have managed to develop this cooperation.Keywords: European penal law, international scene, liberty security and justice area, mutual recognition
Procedia PDF Downloads 4091675 Hand Gestures Based Emotion Identification Using Flex Sensors
Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan
Abstract:
In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.Keywords: emotion identification, emotion models, gesture recognition, user perception
Procedia PDF Downloads 2861674 A Case Study Approach on Co-Constructing the Idea of 'Safety' with Children
Authors: Beng Zhen Yeow
Abstract:
In most work that involves children, the voice of the children is often not heard. This is ironic since a lot of discussions might involve their welfare and safety. It might seem natural that the professionals should hear from them about what they wish for instead of deciding what is best for them. However, this, unfortunately, might be more the exception than the norm in most case and hence in many instances, children are merely 'subjects' in conversations about safety instead of active participants in the construction or creation of safety in the family. There might be many reasons why it does not happen in our work. Firstly, professionals have learnt how to 'socialise' into their professional roles and hence in the process become 'un-childlike'. Secondly, there is also a lack of professional training with regards to how to talk with children. Finally, there might be also a lack of concrete tools and techniques that are developed to facilitate the process. In this paper, the case study method is used to show how the idea of safety could be concretised and discussed with children and their family members, and hence making them active participants and co-creators of their own safety. Specific skills and techniques are highlighted through the case study. In this case, there was improvement in outcomes like no repeated offence or abuse. In addition, children were also able to advocate for their own safety after six months of intervention and how the family members were able to explicitly say what they can do to improve safety. The professionals in the safety network reported significant improvements. On top of that, the abused child who was removed due to child protection concerns, had verbalized observations of change in mother’s parenting abilities, and has requested for home leave to begin due to ownership of safety planning and having confidence to co-create safety for her siblings and herself together with the professionals in the safety network. Children becoming active participants in the co-creation of safety not only serve the purpose in allowing them to own a 'voice' but at the same time, give them greater confidence to protect themselves at home and in other contexts outside of home.Keywords: partnering for safety, collaborative social work, family and systemic psychotherapy, child protection
Procedia PDF Downloads 1201673 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 5751672 LuMee: A Centralized Smart Protector for School Children who are Using Online Education
Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.
Abstract:
This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data
Procedia PDF Downloads 911671 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1631670 A Fast Version of the Generalized Multi-Directional Radon Transform
Authors: Ines Elouedi, Atef Hammouda
Abstract:
This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition
Procedia PDF Downloads 2791669 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 4991668 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter
Procedia PDF Downloads 425