Search results for: system of system decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22764

Search results for: system of system decision making

22314 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.

Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing

Procedia PDF Downloads 110
22313 Investigating the Impact of Individual Risk-Willingness and Group-Interaction Effects on Business Model Innovation Decisions

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. Individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) Which impact has the individual risk-willingness on BMI decisions? And ii) how do group interaction effects impact BMI decisions? After conducting 26 in-depth interviews with executives from the manufacturing industry, the applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, decision-making, group biases, group decisions, group-interaction effects, risk-willingness

Procedia PDF Downloads 96
22312 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
22311 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening

Authors: Partha Saha, Uttam Kumar Banerjee

Abstract:

Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.

Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries

Procedia PDF Downloads 258
22310 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 104
22309 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 73
22308 Maxwell’s Economic Demon Hypothesis and the Impossibility of Economic Convergence of Developing Economies

Authors: Firano Zakaria, Filali Adib Fatine

Abstract:

The issue f convergence in theoretical models (classical or Keynesian) has been widely discussed. The results of the work affirm that most countries are seeking to get as close as possible to a steady state in order to catch up with developed countries. In this paper, we have retested this question whether it is absolute or conditional. The results affirm that the degree of convergence of countries like Morocco is very low and income is still far from its equilibrium state. Moreover, the analysis of financial convergence, of the countries in our panel, states that the pace in this sector is more intense: countries are converging more rapidly in financial terms. The question arises as to why, with a fairly convergent financial system, growth does not respond, yet the financial system should facilitate this economic convergence. Our results confirm that the degree of information exchange between the financial system and the economic system did not change significantly between 1985 and 2017. This leads to the hypothesis that the financial system is failing to serve its role as a creator of information in developing countries despite all the reforms undertaken, thus making the existence of an economic demon in the Maxwell prevail.

Keywords: economic convergence, financial convergence, financial system, entropy

Procedia PDF Downloads 91
22307 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
22306 Informed Decision-Making in Classrooms among High School Students regarding Nuclear Power Use in India

Authors: Dinesh N. Kurup, Celine Perriera

Abstract:

The economic development of any country is based on the policies adopted by the government from time to time. If these policies are framed by the opinion of the people of the country, there is need for having strong knowledge base, right from the school level. There should be emphasis to provide in education, an ability to take informed decisions regarding socio-scientific issues. It would be better to adopt this practice in high school classrooms to build capacity among future citizens. This study is an attempt to provide a different approach of teaching and learning in classrooms at the high school level in Indian schools for providing opportunity for informed decision making regarding nuclear power use. A unit of work based on the 5E instructional model about the use of nuclear energy is used to build knowledge base and find out the effectiveness in terms of its influence for taking decisions as a future citizen. A sample of 120 students from three high schools using different curricula and teaching and learning methods were chosen for this study. This research used a design based research method. A pre and post questionnaire based on the theory of reasoned action, structured observations, focus group interviews and opportunity for decision making were used during the intervention. The data analysed qualitatively and quantitatively, and the qualitative data were coded into categories based on responses. The results of the study show that students were able to make informed decisions and could give reasons for their decisions. They were enthusiastic in formulating policy making based on their knowledge base and have strong held views and reasoning for their choice.

Keywords: informed decision making, socio-scientific issues, nuclear energy use, policy making

Procedia PDF Downloads 302
22305 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production

Authors: Deepak Singh, Rail Kuliev

Abstract:

This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.

Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring

Procedia PDF Downloads 86
22304 Application of Fuzzy TOPSIS in Evaluating Green Transportation Options for Dhaka Megacity

Authors: Md. Moniruzzaman, Thirayoot Limanond

Abstract:

Being the most visible indicator, the transport system of a city points out how developed the city is. Dhaka megacity holds a mixed composition of motorized and non-motorized modes of transport and the number of vehicle figure is escalating over times. And this obviously poses associated environmental costs like air pollution, noise etc. which is degrading the quality of life in the city. Eventually sustainable transport or more importantly green transport from environmental point of view has become a prime choice to the transport professionals in order to cope up the crisis. Currently the city authority is planning to execute such sustainable transport systems that could serve the pressing demand of the present and meet the future needs effectively. This study focuses on the selection and evaluation of green transportation systems among potential alternatives on a priority basis. In this paper, Fuzzy TOPSIS - a multi-criteria decision method is presented to find out the most prioritized alternative. In the first step, Twenty-one individual specific criteria for sustainability assessment are selected. In the following step, experts provide linguistic ratings to the potential alternatives with respect to the selected criteria. The approach is used to generate aggregate scores for sustainability assessment and selection of the best alternative. In the third step, a sensitivity analysis is performed to understand the influence of criteria weights on the decision making process. The key strength of fuzzy TOPSIS approach is its practical applicability having a generation of good quality solution even under uncertainty.

Keywords: green transport, multi-criteria decision approach, urban transportation system, sustainability assessment, fuzzy theory, uncertainty

Procedia PDF Downloads 290
22303 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort

Authors: Xiaohua Zou, Yongxin Su

Abstract:

The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.

Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response

Procedia PDF Downloads 85
22302 Aircraft Line Maintenance Equipped with Decision Support System

Authors: B. Sudarsan Baskar, S. Pooja Pragati, S. Raj Kumar

Abstract:

The cost effectiveness in aircraft maintenance is of high privilege in the recent days. The cost effectiveness can be effectively made when line maintenance activities are incorporated at airports during Turn around time (TAT). The present work outcomes the shortcomings that affect the dispatching of the aircrafts, aiming at high fleet operability and low maintenance cost. The operational and cost constraints have been discussed and a suggestive alternative mechanism is proposed. The possible allocation of all deferred maintenance tasks to a set of all deferred maintenance tasks to a set of suitable airport resources have termed as alternative and is discussed in this paper from the data’s collected from the kingfisher airlines.

Keywords: decision support system, aircraft maintenance planning, maintenance-cost, RUL(remaining useful life), logistics, supply chain management

Procedia PDF Downloads 502
22301 Information System Development for Online Journal System Using Online Journal System for Journal Management of Suan Sunandha Rajabhat University

Authors: Anuphan Suttimarn, Natcha Wattanaprapa, Suwaree Yordchim

Abstract:

The aim of this study is to develop the online journal system using a web application to manage the journal service of Suan Sunandha Rajabhat University in order to improve the journal management of the university. The main structures of the system process consist of 1. journal content management system 2. membership system of the journal and 3. online submission or review process. The investigators developed the system based on a web application using open source OJS software and phpMyAdmin to manage a research database. The system test showed that this online system 'Online Journal System (OJS)' could shorten the time in the period of submission article to journal and helped in managing a journal procedure efficiently and accurately. The quality evaluation of Suan Sunandha Rajabhat online journal system (SSRUOJS) undertaken by experts and researchers in 5 aspects; design, usability, security, reducing time, and accuracy showed the highest average value (X=4.30) on the aspect of reducing time. Meanwhile, the system efficiency evaluation was on an excellent level (X=4.13).

Keywords: online journal system, Journal management, Information system development, OJS

Procedia PDF Downloads 175
22300 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia

Authors: Wan Noorul Hafilah Binti Wan Ariffin

Abstract:

Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.

Keywords: climate change, embankment dam, failure, risk-informed decision making

Procedia PDF Downloads 166
22299 Multi-Criteria Decision Support System for Modeling of Civic Facilities Using GIS Applications: A Case Study of F-11, Islamabad

Authors: Asma Shaheen Hashmi, Omer Riaz, Khalid Mahmood, Fahad Ullah, Tanveer Ahmad

Abstract:

The urban landscapes are being change with the population growth and advancements in new technologies. The urban sprawl pattern and utilizes are related to the local socioeconomic and physical condition. Urban policy decisions are executed mostly through spatial planning. A decision support system (DSS) is very powerful tool which provides flexible knowledge base method for urban planning. An application was developed using geographical information system (GIS) for urban planning. A scenario based DSS was developed to integrate the hierarchical muti-criteria data of different aspects of urban landscape. These were physical environment, the dumping site, spatial distribution of road network, gas and water supply lines, and urban watershed management, selection criteria for new residential, recreational, commercial and industrial sites. The model provided a framework to incorporate the sustainable future development. The data can be entered dynamically by planners according to the appropriate criteria for the management of urban landscapes.

Keywords: urban, GIS, spatial, criteria

Procedia PDF Downloads 637
22298 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria

Authors: Tomola Obamuyi

Abstract:

The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,

Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression

Procedia PDF Downloads 120
22297 Intelligent Quality Management System on the Example оf Bread Baking

Authors: Irbulat Utepbergenov, Lyazzat Issabekova, Shara Toybayeva

Abstract:

This article discusses quality management using the bread baking process as an example. The baking process must be strictly controlled and repeatable. Automation and monitoring of quality management systems can help. After baking bread, quality control of the finished product should be carried out. This may include an evaluation of appearance, weight, texture, and flavor. It is important to continuously work to improve processes and products based on data and feedback from the quality management system. A method and model of automated quality management and an intelligent automated management system based on intelligent technologies are proposed, which allow to automate the processes of QMS implementation and support and improve the validity, efficiency, and effectiveness of management decisions by automating a number of functions of decision makers and staff. This project is supported by the grant of the Ministry of Education and Science of the Republic of Kazakhstan (Zhas Galym project No. AR 13268939 Research and development of digital technologies to ensure consistency of the carriers of normative documents of the quality management system).

Keywords: automated control system, quality management, efficiency evaluation, bakery oven, intelligent system

Procedia PDF Downloads 38
22296 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
22295 Establishing a Cause-Effect Relationship among the Key Success Factors of Healthcare Waste Management in India

Authors: Ankur Chauhan, Amol Singh

Abstract:

The increasing human resource has led to the rapid increment in the generation of healthcare waste across the world. Since, this waste consists of the infectious and hazardous components emerged from the patient care activities in different healthcare facilities; therefore, its proper management becomes vital for mitigating its negative impact on society and environment. The present research work focuses on the identification of the key success factors for developing a successful healthcare waste management plan. In addition, the key success factors have been studied by developing a causal diagram with the help of a decision making trial and evaluation (DEMATEL) approach. The findings of the study would help in the filtration of dominant key success factors which would further help in making a comparative assessment of the waste management plan of different hospitals.

Keywords: healthcare waste disposal, environment and society, multi-criteria decision making, DEMATEL

Procedia PDF Downloads 388
22294 Developing a Decision-Making Tool for Prioritizing Green Building Initiatives

Authors: Tayyab Ahmad, Gerard Healey

Abstract:

Sustainability in built environment sector is subject to many development constraints. Building projects are developed under different requirements of deliverables which makes each project unique. For an owner organization, i.e., a higher-education institution, involved in a significant building stock, it is important to prioritize some of the sustainability initiatives over the others in order to align the sustainable building development with organizational goals. The point-based green building rating tools i.e. Green Star, LEED, BREEAM are becoming increasingly popular and are well-acknowledged worldwide for verifying a sustainable development. It is imperative to synthesize a multi-criteria decision-making tool that can capitalize on the point-based methodology of rating systems while customizing the sustainable development of building projects according to the individual requirements and constraints of the client organization. A multi-criteria decision-making tool for the University of Melbourne is developed that builds on the action-learning and experience of implementing Green Buildings at the University of Melbourne. The tool evaluates the different sustainable building initiatives based on the framework of Green Star rating tool of Green Building Council of Australia. For each different sustainability initiative the decision-making tool makes an assessment based on at least five performance criteria including the ease with which a sustainability initiative can be achieved and the potential of a sustainability initiative to enhance project objectives, reduce life-cycle costs, enhance University’s reputation, and increase the confidence in quality construction. The use of a weighted aggregation mathematical model in the proposed tool can have a considerable role in the decision-making process of a Green Building project by indexing the Green Building initiatives in terms of organizational priorities. The index value of each initiative will be based on its alignment with some of the key performance criteria. The usefulness of the decision-making tool is validated by conducting structured interviews with some of the key stakeholders involved in the development of sustainable building projects at the University of Melbourne. The proposed tool is realized to help a client organization in deciding that within limited resources which sustainability initiatives and practices are more important to be pursued than others.

Keywords: higher education institution, multi-criteria decision-making tool, organizational values, prioritizing sustainability initiatives, weighted aggregation model

Procedia PDF Downloads 234
22293 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System

Authors: Xuezhang Hou

Abstract:

In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.

Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations

Procedia PDF Downloads 136
22292 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 166
22291 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste

Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni

Abstract:

Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.

Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)

Procedia PDF Downloads 114
22290 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System

Authors: Stephen A. Akinlabi, Esther T. Akinlabi

Abstract:

The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.

Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis

Procedia PDF Downloads 383
22289 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making

Authors: Hossein Afzali

Abstract:

Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.

Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty

Procedia PDF Downloads 186
22288 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 560
22287 Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy

Authors: Edward B. Ssekulima, Amir Etemadi

Abstract:

This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements.

Keywords: sustainable grid-integration, system of systems, systems thinking, variable energy resources

Procedia PDF Downloads 125
22286 Object Oriented Software Engineering Approach to Industrial Information System Design and Implementation

Authors: Issa Hussein Manita

Abstract:

This paper presents an example of industrial information system design and implementation (IIDC), the most common software engineering design steps that are applied to the different design stages. We are going through the life cycle of software system development. We start by a study of system requirement and end with testing and delivering system, going by system design and coding, program integration and system integration step. The most modern software design tools available used in the design this includes, but not limited to, Unified Modeling Language (UML), system modeling, SQL server side application, uses case analysis, design and testing as applied to information processing systems. The system is designed to perform tasks specified by the client with real data. By the end of the implementation of the system, default or user defined acceptance policy to provide an overall score as an indication of the system performance is used. To test the reliability of he designed system, it is tested in different environment and different work burden such as multi-user environment.

Keywords: software engineering, design, system requirement, integration, unified modeling language

Procedia PDF Downloads 570
22285 Public Participation Best Practices in Environmental Decision-making in Newfoundland and Labrador: Analyzing the Forestry Management Planning Process

Authors: Kimberley K. Whyte-Jones

Abstract:

Public participation may improve the quality of environmental management decisions. However, the quality of such a decision is strongly dependent on the quality of the process that leads to it. In order to ensure an effective and efficient process, key features of best practice in participation should be carefully observed; this would also combat disillusionment of citizens, decision-makers and practitioners. The overarching aim of this study is to determine what constitutes an effective public participation process relevant to the Newfoundland and Labrador, Canada context, and to discover whether the public participation process that led to the 2014-2024 Provincial Sustainable Forest Management Strategy (PSFMS) met best practices criteria. The research design uses an exploratory case study strategy to consider a specific participatory process in environmental decision-making in Newfoundland and Labrador. Data collection methods include formal semi-structured interviews and the review of secondary data sources. The results of this study will determine the validity of a specific public participation best practice framework. The findings will be useful for informing citizen participation processes in general and will deduce best practices in public participation in environmental management in the province. The study is, therefore, meaningful for guiding future policies and practices in the management of forest resources in the province of Newfoundland and Labrador, and will help in filling a noticeable gap in research compiling best practices for environmentally related public participation processes.

Keywords: best practices, environmental decision-making, forest management, public participation

Procedia PDF Downloads 320