Search results for: research data registry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40737

Search results for: research data registry

40287 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 713
40286 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 484
40285 Analysis of Oral and Maxillofacial Histopathology Service in Tertiary Center in Oman in the Past 13 Years

Authors: Sabreen Al Shamli, Abdul Rahman Al azure

Abstract:

Microscopic examination by histopathology is the gold standard for diagnosing many oral and maxillofacial pathologies. Current clinical guidelines and medicolegal regulations recommend the utilization of histopathology services for confirming pathologies being treated. The goal of this study was to determine the prevalence and distribution of oral and maxillofacial biopsies that had been histopathologically diagnosed at Anahdha Hospital (ANH). A total of 512 biopsies randomly selected from a ground total of 3310 biopsies, which were submitted for oral and maxillofacial histopathological specimens, were analyzed at Nahdha Hospital in Oman between January 2010 and December 2022. Data collected retrospectively selected from all case notes of patients who had oral histopathology examinations performed as part of their treatment. Data collected from the Shifa system was transferred to Microsoft Excel and analyzed using SPSS. Research ethics approval was obtained from the research committee of the hospital. This study provides background information on oral histopathology prevalence that could be helpful in future research in Oman. The findings of the present study are in agreement with the reported data from other investigations, even when it is taken into account how difficult it is to compare prevalence rates from different studies.

Keywords: oral biopsy, maxillofacial histopathology, oral disease, maxillofacial specimens

Procedia PDF Downloads 75
40284 Research on Energy-Related Occupant Behavior of Residential Air Conditioning Based on Zigbee Intelligent Electronic Equipment

Authors: Dawei Xia, Benyan Jiang, Yong Li

Abstract:

Split-type air conditioners is widely used for indoor temperature regulation in urban residential buildings in summer in China. The energy-related occupant behavior has a great impact on building energy consumption. Obtaining the energy-related occupant behavior data of air conditioners is the research basis for the energy consumption prediction and simulation. Relying on the development of sensing and control technology, this paper selects Zigbee intelligent electronic equipment to monitor the energy-related occupant behavior of 20 households for 3 months in summer. Through analysis of data, it is found that people of different ages in the region have significant difference in the time, duration, frequency, and energy consumption of air conditioners, and form a data model of three basic energy-related occupant behavior patterns to provide an accurate simulation of energy.

Keywords: occupant behavior, Zigbee, split air conditioner, energy simulation

Procedia PDF Downloads 196
40283 Some Factors Affecting to Farm Size of Duck Farming

Authors: Veronica Sri Lestari, Ahmad Ramadhan Siregar

Abstract:

The purpose of this research was to know some factors affecting farm size of duck farming (case study in Pinrang district, South Sulawesi). This research was conducted in 2013. Total sample was 45 duck farmers which were selected from 6 regions in Mattiro Sompe sub district, Pinrang district, South Sulawesi province through stratified random sampling. Data were collected through interviews using questionnaires and observation. Multiple regression equation was used to analyze the data. Dependent variable was duck population, while age of respondents, farming experience, land size, education, and income level as independent variables. This research revealed that R2 was 0.920. Simultaneously, age of respondents, farming experience, land size, education, and income level significantly influenced farm size of duck farming (P < 1%). Only income influenced farm size of duck farming (P < 1%).

Keywords: duck, dry system, factors, farm-size

Procedia PDF Downloads 504
40282 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
40281 Maximizing the Role of Companion Teachers for the Achievement of Professional Competencies and Pedagogics Workshop Activities of Teacher Professional Participants in the Faculty of Teaching and Education of Mulawarman University

Authors: Makrina Tindangen

Abstract:

The problems faced by participants of teacher profession program in Faculty of teaching and education Mulawarman University is professional and pedagogic competence. Professional competence related to the mastery of teaching materials, while pedagogic competence related with the ability to plan and to implement learning. Based on the problems, the purpose of the research is to maximize the role of companion teacher for the achievement of professional and pedagogic competencies in the workshop of the participants of teacher professional education in the Faculty of Teaching and Education of Mulawarman University. Qualitative research method with interview guidance and document to get in-depth data on how to maximize the role of companion teachers in the achievement of professional and pedagogic competencies in the workshop participants of professional education participants. Location of this research is on the Faculty of Teaching and Education of Mulawarman University, Samarinda City, East Kalimantan Province. Research respondents were 12 teachers of workshop facilitator. Descriptive data analysis is through interpretation of interview data. The conclusion of the research result, how to maximize the role of assistant teachers in workshop activities for the professional competence and pedagogic competence of professional teacher training program participants, through facilitation activities conducted by teachers of companion related to real problems faced by students in school, so that the workshop participants have professional competence and pedagogic as an initial competence before carrying out practical activities of field experience in school.

Keywords: companion teacher, professional and pedagogical competence, activities, workshop participants

Procedia PDF Downloads 189
40280 Shape Management Method of Large Structure Based on Octree Space Partitioning

Authors: Gichun Cha, Changgil Lee, Seunghee Park

Abstract:

The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."

Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning

Procedia PDF Downloads 297
40279 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures

Authors: Silvina Caíno-Lores, Jesús Carretero

Abstract:

Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.

Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing

Procedia PDF Downloads 259
40278 Application of Cloud Based Healthcare Information System through a Smart Card in Kingdom of Saudi Arabia

Authors: Wasmi Woishi

Abstract:

Smart card technology is a secure and safe technology that is expanding its capabilities day by day in terms of holding important information without alteration. It is readily available, and its ease of portability makes it more efficient in terms of its usage. The smart card is in use by many industries such as financial, insurance, governmental industries, personal identification, to name a few. Smart card technology is popular for its wide familiarity, adaptability, accessibility, benefits, and portability. This research aims to find out the perception toward the application of a cloud-based healthcare system through a smart card in KSA. The research has compiled the countries using a smart card or smart healthcare card and indicated the potential benefits of implementing smart healthcare cards. 120 participants from Riyadh city were surveyed by the means of a closed-ended questionnaire. Data were analyzed through SPSS. This research extends the research body in the healthcare system. Empirical evidence regarding smart healthcare cards is scarce and hence undertaken in this study. The study provides a useful insight into collecting, storing, analyzing, manipulating, and accessibility of medical information regarding smart healthcare cards. Research findings can help achieve KSA's Vision 2030 goals in terms of the digitalization of healthcare systems in improving its efficiency and effectiveness in storing and accessing healthcare data.

Keywords: smart card technology, healthcare using smart cards, smart healthcare cards, KSA healthcare information system, cloud-based healthcare cards

Procedia PDF Downloads 162
40277 Thoughts on the Informatization Technology Innovation of Cores and Samples in China

Authors: Honggang Qu, Rongmei Liu, Bin Wang, Yong Xu, Zhenji Gao

Abstract:

There is a big gap in the ability and level of the informatization technology innovation of cores and samples compared with developed countries. Under the current background of promoting the technology innovation, how to strengthen the informatization technology innovation of cores and samples for National Cores and Samples Archives, which is a national innovation research center, is an important research topic. The paper summarizes the development status of cores and samples informatization technology, and finds the gaps and deficiencies, and proposes the innovation research directions and content, including data extraction, recognition, processing, integration, application and so on, so as to provide some reference and guidance for the future innovation research of the archives and support better the geological technology innovation in China.

Keywords: cores and samples;, informatization technology;, innovation;, suggestion

Procedia PDF Downloads 126
40276 The Use of Methods and Techniques of Drama Education with Kindergarten Teachers

Authors: Vladimira Hornackova, Jana Kottasova, Zuzana Vanova, Anna Jungrova

Abstract:

Present study deals with drama education in preschool education. The research made in this field brings a qualitative comparative survey with the aim to find out the use of methods and techniques of drama education in preschool education at university or secondary school graduate preschool teachers. The research uses a content analysis and an unstandardized questionnaire for preschool teachers and obtained data are processed with the help of descriptive methods and correlations. The results allow a comparison of aspects applied through drama in preschool education. The research brings impulses for education improvement in kindergartens and inspiration for university study programs of drama education in the professional training of preschool teachers.

Keywords: drama education, preschool education, preschool teacher, research

Procedia PDF Downloads 365
40275 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data

Authors: Shreya Borthakur, Aastha Vartak

Abstract:

This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.

Keywords: RSVP, attention, visual processing, attentional blink, EEG

Procedia PDF Downloads 69
40274 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
40273 Assessment of the Contribution of Geographic Information System Technology in Non Revenue Water: Case Study Dar Es Salaam Water and Sewerage Authority Kawe - Mzimuni Street

Authors: Victor Pesco Kassa

Abstract:

This research deals with the assessment of the contribution of GIS Technology in NRW. This research was conducted at Dar, Kawe Mzimuni Street. The data collection was obtained from existing source which is DAWASA HQ. The interpretation of the data was processed by using ArcGIS software. The data collected from the existing source reveals a good coverage of DAWASA’s water network at Mzimuni Street. Most of residents are connected to the DAWASA’s customer service. Also the collected data revealed that by using GIS DAWASA’s customer Geodatabase has been improved. Through GIS we can prepare customer location map purposely for site surveying also this map will be able to show different type of customer that are connected to DAWASA’s water service. This is a perfect contribution of the GIS Technology to address and manage the problem of NRW in DAWASA. Finally, the study recommends that the same study should be conducted in other DAWASA’s zones such as Temeke, Boko and Bagamoyo not only at Kawe Mzimuni Street. Through this study it is observed that ArcGIS software can offer powerful tools for managing and processing information geographically and in water and sanitation authorities such as DAWASA.

Keywords: DAWASA, NRW, Esri, EURA, ArcGIS

Procedia PDF Downloads 83
40272 Canadian Business Leaders’ Phenomenological Online Education Expansion

Authors: Amna Khaliq

Abstract:

This research project centers on Canadian business leaders’ phenomenological online education expansion by navigating the challenges faced by strategic leaders concerning the expansion of online education in the Canadian higher education sector from a business perspective. The study identifies the problems and opportunities of faculty members’ transition from traditional face-to-face to online instruction, particularly in the context of technology-enhanced learning (TEL), and their influence on the growth strategies of Canadian educational institutions. It explores strategic leaders’ approaches and the impact of emerging technologies to assist with developing and executing business strategies to expand online education in Canada. As online education has gained prominence in the country, this research addresses a relevant business problem for educational institutions. The research employs a phenomenological approach in the qualitative research design to conduct this investigation. The study interviews eighteen faculty members engaged in online education in Canada. The interview data is analyzed to answer the three research questions for strategic leaders to expand online education with higher education institutions in Canada. The recommendations include 1) data privacy, infrastructure, security, and technology, 2) support and training for student engagement, 3) accessibility and inclusion, and 4) collaboration among institutions associated with expanding online education.

Keywords: strategic leadership, Canada, education, technology

Procedia PDF Downloads 64
40271 Using 'Know, Want to Know, Learned' Strategy to Enhance the Seventh C Grade Students' Reading Comprehension Achievement at SMPN 1 Mumbulsari

Authors: Abdul Rofiq Badril Rizal M. Z.

Abstract:

Reading becomes one of the most important skills in teaching and learning English. The purpose of this research was to improve the students' active participation, and reading comprehension achievement by using Know, Want to Know, Learned (KWL) strategy. The research design was Classroom Action Research. The area and participants of this research were chosen by using purposive method. The data were collected by observation, a reading comprehension test, interview, and documentation. The results showed that there was significant improvement in Cycle 1 to Cycle 2 of the research. In cycle 1, the students’ active participation increased 49.77% from 28% to 77.77. In addition, in cycle 2, the students’ active participation also increased by 14.17% from 77.77% to 81.94%. The students’ reading comprehension achievement also increased by 52.14% from 25% to 77.14% in Cycle 1 and increased by 5.71% from 77.14% to 82.85% in cycle 2. It indicated that using Know, Want to Know, Learned (KWL) strategy could enhance the Seventh C grade students’ descriptive text reading comprehension achievement, and active participation.

Keywords: active participation, reading comprehension, classroom action research, Indonesian folktales

Procedia PDF Downloads 133
40270 Evaluation of the Nursing Management Course in Undergraduate Nursing Programs of State Universities in Turkey

Authors: Oznur Ispir, Oya Celebi Cakiroglu, Esengul Elibol, Emine Ceribas, Gizem Acikgoz, Hande Yesilbas, Merve Tarhan

Abstract:

This study was conducted to evaluate the academic staff teaching the 'Nursing Management' course in the undergraduate nursing programs of the state universities in Turkey and to assess the current content of the course. Design of the study is descriptive. Population of the study consists of seventy-eight undergraduate nursing programs in the state universities in Turkey. The questionnaire/survey prepared by the researchers was used as a data collection tool. The data were obtained by screening the content of the websites of nursing education programs between March and May 2016. Descriptive statistics were used to analyze the data. The research performed within the study indicated that 58% of the undergraduate nursing programs from which the data were derived were included in the school of health, 81% of the academic staff graduated from the undergraduate nursing programs, 40% worked as a lecturer and 37% specialized in a field other than the nursing. The research also implied that the above-mentioned course was included in 98% of the programs from which it was possible to obtain data. The full name of the course was 'Nursing Management' in 95% of the programs and 98% stated that the course was compulsory. Theory and application hours were 3.13 and 2.91, respectively. Moreover, the content of the course was not shared in 65% of the programs reviewed. This study demonstrated that the experience and expertise of the academic staff teaching the 'Nursing Management' course was not sufficient in the management area, and the schedule and content of the course were not sufficient although many nursing education programs provided the course. Comparison between the curricula of the course revealed significant differences.

Keywords: nursing, nursing management, nursing management course, undergraduate program

Procedia PDF Downloads 358
40269 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 574
40268 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 346
40267 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 90
40266 Evaluating Effects of Health and Physical Maintenance on Academic Competencies of University Teachers in Pakistan

Authors: Muhammad Badar Habib, Muhammad Shakir, Asif Ali, Muhammad Zia ul Haq

Abstract:

Purpose of the research is to examine the university teachers’ health and physical activities regarding their academic competencies. Major objectives of this piece research were (a) to identify health problems of teachers at university level that affects academic competencies of university teachers and (b) to evaluate educational betterment through physical balance. This research is descriptive in nature and questionnaire was used as source of collecting data. Population of the present research comprises teachers, professors and professionals teaching in the universities of Pakistan. 580 university teachers were selected as a population of the study. Random sampling technique was used to identify recipients. Data was feed and filter in Ms-Excel. In the light of the analysis of the study following findings were drawn out. This study found that the university teachers in Pakistan do not adopt proper physical exercise program. They were less interested to burn their extra calories and face diseases such as cramping, contraction of the muscles, diabetics and stomach diseases. This study recommends that seminars/workshops may be held by University establishment; to develop overall awareness among the teachers.

Keywords: evaluating effects of health and physical maintenance, academic competencies, university teachers, Pakistan

Procedia PDF Downloads 457
40265 Learning Vocabulary with SkELL: Developing a Methodology with University Students in Japan Using Action Research

Authors: Henry R. Troy

Abstract:

Corpora are becoming more prevalent in the language classroom, especially in the development of dictionaries and course materials. Nevertheless, corpora are still perceived by many educators as difficult to use directly in the classroom, a process which is also known as “data-driven learning” (DDL). Action research has been identified as a method by which DDL’s efficiency can be increased, but it is also an approach few studies on DDL have employed. Studies into the effectiveness of DDL in language education in Japan are also rare, and investigations focused more on student and teacher reactions rather than pre and post-test scores are rarer still. This study investigates the student and teacher reactions to the use of SkELL, a free online corpus designed to be user-friendly, for vocabulary learning at a university in Japan. Action research is utilized to refine the teaching methodology, with changes to the method based on student and teacher feedback received via surveys submitted after each of the four implementations of DDL. After some training, the students used tablets to study the target vocabulary autonomously in pairs and groups, with the teacher acting as facilitator. The results show that the students enjoyed using SkELL and felt it was effective for vocabulary learning, while the teaching methodology grew in efficiency throughout the course. These findings suggest that action research can be a successful method for increasing the efficacy of DDL in the language classroom, especially with teachers and students who are new to the practice.

Keywords: action research, corpus linguistics, data-driven learning, vocabulary learning

Procedia PDF Downloads 249
40264 Helping the Development of Public Policies with Knowledge of Criminal Data

Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno

Abstract:

The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.

Keywords: social data analysis, criminal records, computational techniques, data mining, big data

Procedia PDF Downloads 84
40263 The Benefits of Using Hijab Syar'i against Female Sexual Abuse

Authors: Catur Sigit Hartanto, Anggraeni Anisa Wara Rahmayanti

Abstract:

Objective: This research is aimed to assess the benefits of using hijab syar'i against female sexual abuse. Method: This research uses a quantitative study. The population is students in Semarang State University who wear hijab syar’i. The sampling technique uses the method of conformity. The retrieving data uses questionnaire on 30 female students as the sample. The data analysis uses descriptive analysis. Result: Using hijab syar’i provides benefits in preventing and minimizing female sexual abuse. Limitation: Respondents were limited to only 30 people.

Keywords: hijab syar’i, female, sexual abuse, student of Semarang State University

Procedia PDF Downloads 283
40262 The Effect of Physical Evidence of Themed Casino Hotels on Customer Value and Satisfaction

Authors: Tao Zhang, Fen Zhang

Abstract:

Physical evidence has emerged as an important concept for understanding customers' behavior in the service industry. While it is still not clear about the effect of physical evidence of themed casino hotels on customer value and satisfaction. After deciding on the research context, the processes of this research started with a review of literature in three subject areas: physical evidence, customer value, and customer satisfactions. Insights from the literature review and pilot interviews are important input that informs the development of the specific research questions. Data collection for this research will be done for two studies: a photo elicitation study and an in-depth interview study.

Keywords: casino, customer value, customer satisfaction, hotel, physical evidence

Procedia PDF Downloads 406
40261 Knowledge and Eating Behavior of Teenage Pregnancy

Authors: Udomporn Yingpaisuk, Premwadee Karuhadej

Abstract:

The purposed of this research was to study the eating habit of teenage pregnancy and its relationship to the knowledge of nutrition during pregnancy. The 100 samples were derived from simple random sampling technique of the teenage pregnancy in Bangkae District. The questionnaire was used to collect data with the reliability of 0.8. The data were analyzed by SPSS for Windows with multiple regression technique. Percentage, mean and the relationship of knowledge of eating and eating behavior were obtained. The research results revealed that their knowledge in nutrition was at the average of 4.07 and their eating habit that they mentioned most was to refrain from alcohol and caffeine at 82% and the knowledge in nutrition influenced their eating habits at 54% with the statistically significant level of 0.001.

Keywords: teenage pregnancy, knowledge of eating, eating behavior, alcohol, caffeine

Procedia PDF Downloads 358
40260 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 493
40259 Positive Behaviour Management Strategies: An Action Research Conducted in a Kindergarten Classroom in Remote Regional Queensland

Authors: Suxiang Yu

Abstract:

As an early childhood teacher in a socially and economically highly disadvantaged suburb in regional QLD, the author endeavors to find out effective positive approaches to behavior management for a classroom that is overwhelmed with challenging behaviors. After evaluating the first-hand data collected from the action research, the author summarizes a few innovative, positive behavior management strategies. The research also implies that behavior management opportunities are actually great social and emotional teachable moments, and by tapping into those teachable moments effectively, the teacher and children will have a closer relationship.

Keywords: action research, behavior management, classroom strategies, social and emotional teaching

Procedia PDF Downloads 169
40258 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 194