Search results for: random forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2819

Search results for: random forest

2369 Co-management Organizations: A Way to Facilitate Sustainable Management of the Sundarbans Mangrove Forests of Bangladesh

Authors: Md. Wasiul Islam, Md. Jamius Shams Sowrov

Abstract:

The Sundarbans is the largest single tract of mangrove forest in the world. This is located in the southwest corner of Bangladesh. This is a unique ecosystem which is a great breeding and nursing ground for a great biodiversity. It supports the livelihood of about 3.5 million coastal dwellers and also protects the coastal belt and inland areas from various natural calamities. Historically, the management of the Sundarbans was controlled by the Bangladesh Forest Department following top-down approach without the involvement of local communities. Such fence and fining-based blue-print approach was not effective to protect the forest which caused Sundarbans to degrade severely in the recent past. Fifty percent of the total tree cover has been lost in the last 30 years. Therefore, local multi-stakeholder based bottom-up co-management approach was introduced at some of the parts of the Sundarbans in 2006 to improve the biodiversity status by enhancing the protection level of the forest. Various co-management organizations were introduced under co-management approach where the local community people could actively involve in various activities related to the management and welfare of the Sundarbans including the decision-making process to achieve the goal. From this backdrop, the objective of the study was to assess the performance of co-management organizations to facilitate sustainable management of the Sundarbans mangrove forests. The qualitative study followed face-to-face interview to collect data using two sets of semi-structured questionnaires. A total of 40 respondents participated in the research that was from eight villagers under two forest ranges. 32 representatives from the local communities as well as 8 official representatives involved in co-management approach were interviewed using snowball sampling technique. The study shows that the co-management approach improved governance system of the Sundarbans through active participation of the local community people and their interactions with the officials via the platform of co-management organizations. It facilitated accountability and transparency system to some extent through following some formal and informal rules and regulations. It also improved the power structure of the management process by fostering local empowerment process particularly the women. Moreover, people were able to learn from their interactions with and within the co-management organizations as well as interventions improved environmental awareness and promoted social learning. The respondents considered good governance as the most important factor for achieving the goal of sustainable management and biodiversity conservation of the Sundarbans. The success of co-management planning process also depends on the active and functional participation of different stakeholders including the local communities where co-management organizations were considered as the most functional platform. However, the governance system was also facing various challenges which resulted in barriers to the sustainable management of the Sundarbans mangrove forest. But still there were some members involved in illegal forest operations and created obstacles against sustainable management of the Sundarbans. Respondents recommended greater patronization from the government, financial and logistic incentives for alternative income generation opportunities with effective participatory monitoring and evaluation system to improve sustainable management of the Sundarbans.

Keywords: Bangladesh, co-management approach, co-management organizations, governance, Sundarbans, sustainable management

Procedia PDF Downloads 181
2368 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 280
2367 The Use of Random Set Method in Reliability Analysis of Deep Excavations

Authors: Arefeh Arabaninezhad, Ali Fakher

Abstract:

Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.

Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty

Procedia PDF Downloads 269
2366 A Comprehensive Analysis of the Phylogenetic Signal in Ramp Sequences in 211 Vertebrates

Authors: Lauren M. McKinnon, Justin B. Miller, Michael F. Whiting, John S. K. Kauwe, Perry G. Ridge

Abstract:

Background: Ramp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Methods: Ramp sequences were compared from 211 vertebrates (110 Mammalian and 101 non-mammalian). The presence and absence of ramp sequences were analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life taxonomy to determine the number of parallelisms and reversals that occurred, and these results were compared to what would be expected due to random chance. Lastly, aligned nucleotides in ramp sequences were compared to the rest of the sequence in order to examine possible differences in phylogenetic signal between these regions of the gene. Results: Parsimony and maximum likelihood analyses of the presence/absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, the retention index of ramp sequences is significantly higher than would be expected due to random chance (p-value = 0). A chi-square analysis of completely orthologous ramp sequences resulted in a p-value of approximately zero as compared to random chance. Discussion: Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches.

Keywords: codon usage bias, phylogenetics, phylogenomics, ramp sequence

Procedia PDF Downloads 167
2365 Geo-Additive Modeling of Family Size in Nigeria

Authors: Oluwayemisi O. Alaba, John O. Olaomi

Abstract:

The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.

Keywords: Bayesian analysis, family size, geo-additive model, negative binomial

Procedia PDF Downloads 550
2364 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 300
2363 Test-Retest Agreement, Random Measurement Error and Practice Effect of the Continuous Performance Test-Identical Pairs for Patients with Schizophrenia

Authors: Kuan-Wei Chen, Chien-Wei Chen, Tai-Ling Chang, Nan-Cheng Chen, Ching-Lin Hsieh, Gong-Hong Lin

Abstract:

Background and Purposes: Deficits in sustained attention are common in patients with schizophrenia. Such impairment can limit patients to effectively execute daily activities and affect the efficacy of rehabilitation. The aims of this study were to examine the test-retest agreement, random measurement error, and practice effect of the Continuous Performance Test-Identical Pairs (CPT-IP) (a commonly used sustained attention test) in patients with schizophrenia. The results can provide empirical evidence for clinicians and researchers to apply a sustained attention test with sound psychometric properties in schizophrenia patients. Methods: We recruited patients with chronic schizophrenia to be assessed twice with 1 week interval using CPT-IP. The intra-class correlation coefficient (ICC) was used to examine the test-retest agreement. The percentage of minimal detectable change (MDC%) was used to examine the random measurement error. Moreover, the standardized response mean (SRM) was used to examine the practice effect. Results: A total of 56 patients participated in this study. Our results showed that the ICC was 0.82, MDC% was 47.4%, and SRMs were 0.36 for the CPT-IP. Conclusion: Our results indicate that CPT-IP has acceptable test-retests agreement, substantial random measurement error, and small practice effect in patients with schizophrenia. Therefore, to avoid overestimating patients’ changes in sustained attention, we suggest that clinicians interpret the change scores of CPT-IP conservatively in their routine repeated assessments.

Keywords: schizophrenia, sustained attention, CPT-IP, reliability

Procedia PDF Downloads 307
2362 Mayan Culture and Attitudes towards Sustainability

Authors: Sarah Ryu

Abstract:

Agricultural methods and ecological approaches employed by the pre-colonial Mayans may provide valuable insights into forest management and viable alternatives for resource sustainability in the face of major deforestation across Central and South America.Using a combination of observation data collected from the modern indigenous inhabitants near Mixco in Guatemala and historical data, this study was able to create a holistic picture of how the Maya maintained their ecosystems. Surveys and observations were conducted in the field, over a period of twelve weeks across two years. Geographic and archaeological data for this area was provided by Guatemalan organizations such as the Universidad de San Carlos de Guatemala. Observations of current indigenous populations around Mixco showed that they adhered to traditional Mayan methods of agriculture, such as terrace construction and arboriculture. Rather than planting one cash crop as was done by the Spanish, indigenous peoples practice agroforestry, cultivating forests that would provide trees for construction material, wild plant foods, habitat for game, and medicinal herbs. The emphasis on biodiversity prevented deforestation and created a sustainable balance between human consumption and forest regrowth. Historical data provided by MayaSim showed that the Mayans successfully maintained their ecosystems from about 800BCE to 700CE. When the Mayans practiced natural resource conservation and cultivated a harmonious relationship with the forest around them, they were able to thrive and prosper alongside nature. Having lasted over a thousand years, the Mayan empire provides a valuable lesson in sustainability and human attitudes towards the environment.

Keywords: biodiversity, forestry, mayan, sustainability

Procedia PDF Downloads 178
2361 Deterministic Random Number Generator Algorithm for Cryptosystem Keys

Authors: Adi A. Maaita, Hamza A. A. Al Sewadi

Abstract:

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfills Shannon’s principle of “confusion and diffusion”. ASCII code characters wereutilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Keywords: cryptosystems, information security agreement, key distribution, random numbers

Procedia PDF Downloads 270
2360 Antagonist Study of Fungi Isolated from the Burned Forests of Region of Mila, Algeria

Authors: Abdelaziz Wided, Khiat Nawel, Khiat Inssaf

Abstract:

The present study was initiated to: Determine burned forest-inhabiting fungi in Zouagha, Terri Beinène, Mila and study the antagonistic activity of Trichoderma sp against Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp. 18 fungal strains were isolated from Soil samples taken from the forest Zouagha (Burned) in the region Mila representing 6 genera: Trichoderma sp et Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp, Rhizopus sp. The tests of dual culture method on culture medium (PDA) against Trichoderma sp et Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp revealed that: Trichoderma sp could reduce l mycelium grouth of Fusarium sp23.13%, Penicillium sp33.13%, Rhizoctoniasp33.75 %and Alternaria sp 38.31% in comparaison with the witness after 6 days at room temperature. The strains of Fusarium sp ,Penicillium sp, Rhizoctonia sp et Alternaria sp showed differences sensibility to the antagoniste.

Keywords: isolation, identification, molds, burned soil of zouagha, antagonism, trichoderma sp

Procedia PDF Downloads 256
2359 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 78
2358 Economics of Sugandhakokila (Cinnamomum Glaucescens (Nees) Dury) in Dang District of Nepal: A Value Chain Perspective

Authors: Keshav Raj Acharya, Prabina Sharma

Abstract:

Sugandhakokila (Cinnamomum glaucescens Nees. Dury) is a large evergreen native tree species; mostly confined naturally in mid-hills of Rapti Zone of Nepal. The species is identified as prioritized for agro-technology development as well as for research and development by a department of plant resources. This species is band for export outside the country without processing by the government of Nepal to encourage the value addition within the country. The present study was carried out in Chillikot village of Dang district to find out the economic contribution of C. glaucescens in the local economy and to document the major conservation threats for this species. Participatory Rural Appraisal (PRA) tools such as Household survey, key informants interviews and focus group discussions were carried out to collect the data. The present study reveals that about 1.7 million Nepalese rupees (NPR) have been contributed annually in the local economy of 29 households from the collection of C. glaucescens berries in the study area. The average annual income of each family was around NPR 67,165.38 (US$ 569.19) from the sale of the berries which contributes about 53% of the total household income. Six different value chain actors are involved in C. glaucescens business. Maximum profit margin was taken by collector followed by producer, exporter and processor. The profit margin was found minimum to regional and village traders. The total profit margin for producers was NPR 138.86/kg, and regional traders have gained NPR 17/kg. However, there is a possibility to increase the profit of producers by NPR 8.00 more for each kg of berries through the initiation of community forest user group and village cooperatives in the area. Open access resource, infestation by an insect to over matured trees and browsing by goats were identified as major conservation threats for this species. Handing over the national forest as a community forest, linking the producers with the processor through organized market channel and replacing the old tree through new plantation has been recommended for future.

Keywords: community forest, conservation threats, C. glaucescens, value chain analysis

Procedia PDF Downloads 144
2357 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun

Abstract:

Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.

Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics

Procedia PDF Downloads 472
2356 Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia

Authors: Abraha Hatsey, Nesibu Yahya, Abeje Eshete

Abstract:

Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest.

Keywords: church forests, regeneration, land use change, vegetation status

Procedia PDF Downloads 211
2355 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia

Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova

Abstract:

Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.

Keywords: biodiversity, climate change, Norway spruce forests, gap model

Procedia PDF Downloads 292
2354 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 378
2353 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 152
2352 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 323
2351 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania

Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani

Abstract:

As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.

Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management

Procedia PDF Downloads 168
2350 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery

Authors: Bencherif Kada

Abstract:

In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, diversity, shrublands

Procedia PDF Downloads 132
2349 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters

Authors: Rama Debbarma

Abstract:

The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.

Keywords: linear base isolator, earthquake, optimization, uncertain parameters

Procedia PDF Downloads 438
2348 Performance Comparison of Cooperative Banks in the EU, USA and Canada

Authors: Matěj Kuc

Abstract:

This paper compares different types of profitability measures of cooperative banks from two developed regions: the European Union and the United States of America together with Canada. We created balanced dataset of more than 200 cooperative banks covering 2011-2016 period. We made series of tests and run Random Effects estimation on panel data. We found that American and Canadian cooperatives are more profitable in terms of return on assets (ROA) and return on equity (ROE). There is no significant difference in net interest margin (NIM). Our results show that the North American cooperative banks accommodated better to the current market environment.

Keywords: cooperative banking, panel data, profitability measures, random effects

Procedia PDF Downloads 115
2347 An Analysis of LoRa Networks for Rainforest Monitoring

Authors: Rafael Castilho Carvalho, Edjair de Souza Mota

Abstract:

As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.

Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest

Procedia PDF Downloads 94
2346 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018

Authors: Mário Ernesto Sitoe, Orlando Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: evasion and retention, cross-validation, bagging, stacking

Procedia PDF Downloads 87
2345 A Sequential Approach for Random-Effects Meta-Analysis

Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya

Abstract:

The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.

Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes

Procedia PDF Downloads 470
2344 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 200
2343 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 429
2342 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia

Authors: Aklilu Getahun Sulito

Abstract:

Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.

Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow

Procedia PDF Downloads 58
2341 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 98
2340 Valorization of a Forest Waste, Modified P-Brutia Cones, by Biosorption of Methyl Geen

Authors: Derradji Chebli, Abdallah Bouguettoucha, Abdelbaki Reffas Khalil Guediri, Abdeltif Amrane

Abstract:

The removal of Methyl Green dye (MG) from aqueous solutions using modified P-brutia cones (PBH and PBN), has been investigated work. The physical parameters such as pH, temperature, initial MG concentration, ionic strength are examined in batch experiments on the sorption of the dye. Adsorption removal of MG was conducted at natural pH 4.5 because the dye is only stable in the range of pH 3.8 to 5. It was observed in experiments that the P-brutia cones treated with NaOH (PBN) exhibited high affinity and adsorption capacity compared to the MG P-brutia cones treated with HCl (PBH) and biosorption capacity of modified P-brutia cones (PBN and PBH) was enhanced by increasing the temperature. This is confirmed by the thermodynamic parameters (ΔG° and ΔH°) which show that the adsorption of MG was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase in the randomness for both adsorbent (PBN and PBH) during the adsorption process. The kinetic model pseudo-first order, pseudo-second order, and intraparticle diffusion coefficient were examined to analyze the sorption process; they showed that the pseudo-second-order model is the one that best describes the adsorption process (MG) on PBN and PBH with a correlation coefficient R²> 0.999. The ionic strength has shown that it has a negative impact on the adsorption of MG on two supports. A reduction of 68.5% of the adsorption capacity for a value Ce=30 mg/L was found for the PBH, while the PBN did not show a significant influence of the ionic strength on adsorption especially in the presence of NaCl. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P-brutia cones with a correlation factor R²>0.999. The capacity adsorption of P-brutia cones, was confirmed for the removal of a dye, MG, from aqueous solution. We note also that P-brutia cones is a material very available in the forest and low-cost biomaterial

Keywords: adsorption, p-brutia cones, forest wastes, dyes, isotherm

Procedia PDF Downloads 382