Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42413

Search results for: panel data analysis

41963 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 147
41962 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: data science, non-negative matrix factorization, missing data, quality of services

Procedia PDF Downloads 131
41961 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
41960 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
41959 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 248
41958 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures

Authors: Moumita Sit, Chaitali Ray

Abstract:

The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.

Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress

Procedia PDF Downloads 150
41957 Moderating Effects of Family Ownership on the Relationship between Corporate Governance Mechanisms and Financial Performance of Publicly Listed Companies in Nigeria

Authors: Ndagi Salihu

Abstract:

Corporate governance mechanisms are the control measures for ensuring that all the interests groups are equally represented and management are working towards wealth creation in the interest of all. Therefore, there are many empirical studies during the last three decades on corporate governance and firm performance. However, little is known about the effects of family ownership on the relationship between corporate governance and firm performance, especially in the developing economy like Nigeria. This limit our understanding of the unique governance dynamics of family ownership with regards firm performance. This study examined the impact of family ownership on the relationship between governance mechanisms and financial performance of publicly listed companies in Nigeria. The study adopted quantitative research methodology using correlational ex-post factor design and secondary data from annual reports and accounts of a sample of 23 listed companies for a period of 5 years (2014-2018). The explanatory variables are the board size, board composition, board financial expertise, and board audit committee attributes. Financial performance is proxy by Return on Assets (ROA) and Return on Equity (ROE). Multiple panel regression technique of data analysis was employed in the analysis, and the study found that family ownership has a significant positive effect on the relationships between corporate governance mechanisms and financial performance of publicly listed firms in Nigeria. This finding is the same for both the ROA and ROE. However, the findings indicate that board size, board financial expertise, and board audit committee attributes have a significant positive impact on the ROA and ROE of the sample firms after the moderation. Moreover, board composition has significant positive effect on financial performance of the sample listed firms in terms of ROA and ROE. The study concludes that the use of family ownership in the control of firms in Nigeria could improve performance by reducing the opportunistic actions managers as well as agency problems. The study recommends that publicly listed companies in Nigeria should allow significant family ownership of equities and participation in management.

Keywords: profitability, board characteristics, agency theory, stakeholders

Procedia PDF Downloads 140
41956 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 176
41955 Factors Affecting the Profitability of Commercial Banks: An Empirical Study of Indian Banking Sector

Authors: Neeraj Gupta, Jitendra Mahakud

Abstract:

The banking system plays a major role in the Indian economy. Banking system is the payment gateway of most of the financial transactions. Banking has gone a major transition that is still in progress. Recent banking reforms after liberalization in 1991 have led to the establishment of the foreign banks in the country. The foreign banks are not listed in the Indian stock markets and have increased the competition leading to the capture of the significant share in the revenue from the public sector banks which are still the major players in the Indian banking sector. The performance of the banking sector depends on the internal (bank specific) as well as the external (market specific and macroeconomic) factors. Profitability in banking sector is affected by numerous factors which can be internal or external. The present study examines these internal and external factors which are likely to effect the profitablilty of the Indian banks. The sample consists of a panel dataset of 64 commercial banks in India, consisting of 1088 observations over the years from 1998 to 2016. The GMM dynamic panel estimation given by Arellano and Bond has been used. The study revealed that the variables capital adequacy ratio, deposit, age, labour productivity, non-performing asset, inflation and concentration have significant effect on performance measured.

Keywords: banks in India, bank performance, bank productivity, banking management

Procedia PDF Downloads 272
41954 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets

Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.

Abstract:

The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.

Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction

Procedia PDF Downloads 117
41953 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.

Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model

Procedia PDF Downloads 41
41952 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 108
41951 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease

Authors: Feng Zhang

Abstract:

Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.

Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand

Procedia PDF Downloads 220
41950 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis

Authors: Hyun-Woo Cho

Abstract:

Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.

Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques

Procedia PDF Downloads 387
41949 Analysis of Lead Time Delays in Supply Chain: A Case Study

Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry

Abstract:

Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.

Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis

Procedia PDF Downloads 730
41948 Differentiation between Different Rangeland Sites Using Principal Component Analysis in Semi-Arid Areas of Sudan

Authors: Nancy Ibrahim Abdalla, Abdelaziz Karamalla Gaiballa

Abstract:

Rangelands in semi-arid areas provide a good source for feeding huge numbers of animals and serving environmental, economic and social importance; therefore, these areas are considered economically very important for the pastoral sector in Sudan. This paper investigates the means of differentiating between different rangelands sites according to soil types using principal component analysis to assist in monitoring and assessment purposes. Three rangeland sites were identified in the study area as flat sandy sites, sand dune site, and hard clay site. Principal component analysis (PCA) was used to reduce the number of factors needed to distinguish between rangeland sites and produce a new set of data including the most useful spectral information to run satellite image processing. It was performed using selected types of data (two vegetation indices, topographic data and vegetation surface reflectance within the three bands of MODIS data). Analysis with PCA indicated that there is a relatively high correspondence between vegetation and soil of the total variance in the data set. The results showed that the use of the principal component analysis (PCA) with the selected variables showed a high difference, reflected in the variance and eigenvalues and it can be used for differentiation between different range sites.

Keywords: principal component analysis, PCA, rangeland sites, semi-arid areas, soil types

Procedia PDF Downloads 186
41947 Interpretation and Clustering Framework for Analyzing ECG Survey Data

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 470
41946 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.

Keywords: forecasting, generalized extreme value (GEV), meteorology, return level

Procedia PDF Downloads 478
41945 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 74
41944 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region

Authors: Musab Isah

Abstract:

This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.

Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool

Procedia PDF Downloads 62
41943 Development of Risk Index and Corporate Governance Index: An Application on Indian PSUs

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Public Sector Undertakings (PSUs), being government-owned organizations have commitments for the economic and social wellbeing of the society; this commitment needs to be reflected in their risk-taking, decision-making and governance structures. Therefore, the primary objective of the study is to suggest measures that may lead to improvement in performance of PSUs. To achieve this objective two normative frameworks (one relating to risk levels and other relating to governance structure) are being put forth. The risk index is based on nine risks, such as, solvency risk, liquidity risk, accounting risk, etc. and each of the risks have been scored on a scale of 1 to 5. The governance index is based on eleven variables, such as, board independence, diversity, risk management committee, etc. Each of them are scored on a scale of 1 to five. The sample consists of 39 PSUs that featured in Nifty 500 index and, the study covers a 10 year period from April 1, 2005 to March, 31, 2015. Return on assets (ROA) and return on equity (ROE) have been used as proxies of firm performance. The control variables used in the model include, age of firm, growth rate of firm and size of firm. A dummy variable has also been used to factor in the effects of recession. Given the panel nature of data and possibility of endogeneity, dynamic panel data- generalized method of moments (Diff-GMM) regression has been used. It is worth noting that the corporate governance index is positively related to both ROA and ROE, indicating that with the improvement in governance structure, PSUs tend to perform better. Considering the components of CGI, it may be suggested that (i). PSUs ensure adequate representation of women on Board, (ii). appoint a Chief Risk Officer, and (iii). constitute a risk management committee. The results also indicate that there is a negative association between risk index and returns. These results not only validate the framework used to develop the risk index but also provide a yardstick to PSUs benchmark their risk-taking if they want to maximize their ROA and ROE. While constructing the CGI, certain non-compliances were observed, even in terms of mandatory requirements, such as, proportion of independent directors. Such infringements call for stringent penal provisions and better monitoring of PSUs. Further, if the Securities and Exchange Board of India (SEBI) and Ministry of Corporate Affairs (MCA) bring about such reforms in the PSUs and make mandatory the adherence to the normative frameworks put forth in the study, PSUs may have more effective and efficient decision-making, lower risks and hassle free management; all these ultimately leading to better ROA and ROE.

Keywords: PSU, risk governance, diff-GMM, firm performance, the risk index

Procedia PDF Downloads 157
41942 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
41941 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 224
41940 Impact of Board Characteristics on Financial Performance: A Study of Manufacturing Sector of Pakistan

Authors: Saad Bin Nasir

Abstract:

The research will examine the role of corporate governance (CG) practices on firm’s financial performance. Population of this research will be manufacture sector of Pakistan. For the purposes of measurement of impact of corporate governance practices such as board size, board independence, ceo/chairman duality, will take as independent variables and for the measurement of firm’s performance return on assets and return on equity will take as dependent variables. Panel data regression model will be used to estimate the impact of CG on firm performance.

Keywords: corporate governance, board size, board independence, leadership

Procedia PDF Downloads 525
41939 Allergy to Animal Hair in the Algerian Population

Authors: Meriche Hacene, Gadiri Sabiha

Abstract:

Introduction: Allergy to animal hair is hypersensitivity to animal appendages to look for in front of any rhinoconjunctivitis or asthma. An anamnesis associated with the prick-tests makes it possible to guide the diagnosis, which will be supplemented in case of doubt by specific immunoglobulin E (IgE) assays. The objective of our study is to study the characteristics of patients sensitized to animal hair. Patients and methods: Retrospective study conducted on 105 adult patients and 69 children over a period of 3 years, including patients who received a specific IgE assay (respiratory panel and pediatric panel) by immunodot method. Result: 105 adult patients, including 74 women and 31 men, with an average age of 41 years, of which 8.5% had sensitization to animal hair (5 men and 4 women), namely: cat (5%), horse (4.7%) and dog (3.8%). For the 69 children, a slight female predominance was noted (56%), with an average age of 7.5 years, of which (13%) are sensitized to animal hair (5 girls and 4 boys): cat (10%), while awareness of dog and horse hair was less frequent with an identical prevalence of (4.34%). The dominant symptoms are rhinorrhea and sneezing for both categories, respectively (40% and 26.6% in adults and 23% for both symptoms in children). Cross-sensitization was observed in the 2 series: 1 single cat-dog and cat-horse case and 2 dog-horse cases in adults. In children 100% of patients with sensitization to dog hair had cross-sensitization to cat hair, only 1 case was observed for cat-horse cross-reactivity. Conclusion: This work shows that allergy to animal hair is common. Studies on more representative samples are recommended.

Keywords: children, allegy to animals, specific Ig E, hypersensitivity

Procedia PDF Downloads 69
41938 Audit Committee Financial Expertise and Financial Reporting Timeliness in Emerging Market: The Role of Audit Committee Chair

Authors: Saeed Rabea Baatwah, Zalailah Salleh, Norsiah Ahmad

Abstract:

This study examines whether audit committee chair with financial expertise enhances the audit committee role in financial reporting quality in emerging market. We investigate this influence by employing the direct effect and moderating effect of audit committee chair with financial expertise on financial reporting timeliness. By using Omani data and the panel data method for two proxies for financial reporting timeliness, we find that audit committee chair with financial expertise enhances the timeliness of financial reporting through making the disclosure of annual reports timely. Further, we report evidence showing that both accounting and non-accounting financial expertise on the audit committee have a positive and significant influence on the timeliness of financial reporting. We also document that the association between financial expertise and the timeliness of financial reporting is more pronounced when the chair of the audit committee has financial expertise. This study is among the first to comprehensively prove that audit committee chair with financial expertise contributes to the quality of financial reporting in emerging market.

Keywords: audit committee, chair with financial expertise, timeliness of financial reporting, Oman

Procedia PDF Downloads 270
41937 The Effect of Global Value Chain Participation on Environment

Authors: Piyaphan Changwatchai

Abstract:

Global value chain is important for current world economy through foreign direct investment. Multinational enterprises' efficient location seeking for each stage of production lead to global production network and more global value chain participation of several countries. Global value chain participation has several effects on participating countries in several aspects including the environment. The effect of global value chain participation on the environment is ambiguous. As a result, this research aims to study the effect of global value chain participation on countries' CO₂ emission and methane emission by using quantitative analysis with secondary panel data of sixty countries. The analysis is divided into two types of global value chain participation, which are forward global value chain participation and backward global value chain participation. The results show that, for forward global value chain participation, GDP per capita affects two types of pollutants in downward bell curve shape. Forward global value chain participation negatively affects CO₂ emission and methane emission. As for backward global value chain participation, GDP per capita affects two types of pollutants in downward bell curve shape. Backward global value chain participation negatively affects methane emission only. However, when considering Asian countries, forward global value chain participation positively affects CO₂ emission. The recommendations of this research are that countries participating in global value chain should promote production with effective environmental management in each stage of value chain. The examples of policies are providing incentives to private sectors, including domestic producers and MNEs, for green production technology and efficient environment management and engaging in international agreements in terms of green production. Furthermore, government should regulate each stage of production in value chain toward green production, especially for Asia countries.

Keywords: CO₂ emission, environment, global value chain participation, methane emission

Procedia PDF Downloads 191
41936 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 18
41935 On the Estimation of Crime Rate in the Southwest of Nigeria: Principal Component Analysis Approach

Authors: Kayode Balogun, Femi Ayoola

Abstract:

Crime is at alarming rate in this part of world and there are many factors that are contributing to this antisocietal behaviour both among the youths and old. In this work, principal component analysis (PCA) was used as a tool to reduce the dimensionality and to really know those variables that were crime prone in the study region. Data were collected on twenty-eight crime variables from National Bureau of Statistics (NBS) databank for a period of fifteen years, while retaining as much of the information as possible. We use PCA in this study to know the number of major variables and contributors to the crime in the Southwest Nigeria. The results of our analysis revealed that there were eight principal variables have been retained using the Scree plot and Loading plot which implies an eight-equation solution will be appropriate for the data. The eight components explained 93.81% of the total variation in the data set. We also found that the highest and commonly committed crimes in the Southwestern Nigeria were: Assault, Grievous Harm and Wounding, theft/stealing, burglary, house breaking, false pretence, unlawful arms possession and breach of public peace.

Keywords: crime rates, data, Southwest Nigeria, principal component analysis, variables

Procedia PDF Downloads 444
41934 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach

Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar

Abstract:

Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.

Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry

Procedia PDF Downloads 317