Search results for: miRNA:mRNA target prediction
4637 Application of Host Factors as Biomarker in Early Diagnosis of Pulmonary Tuberculosis
Authors: Ambrish Tiwari, Sudhasini Panda, Archana Singh, Kalpana Luthra, S. K. Sharma
Abstract:
Introduction: On the basis of available literature we know that various host factors play a role in outcome of Tuberculosis (TB) infection by modulating innate immunity. One such factor is Inducible Nitric Oxide Synthase enzyme (iNOS) which help in the production of Nitric Oxide (NO), an antimicrobial agent. Expression of iNOS is in control of various host factors in which Vitamin D along with its nuclear receptor Vitamin D receptor (VDR) is one of them. Vitamin D along with its receptor also produces cathelicidin (antimicrobicidal agent). With this background, we attempted to investigate the levels of Vitamin D and NO along with their associated molecules in tuberculosis patients and household contacts as compared to healthy controls and assess the implication of these findings in susceptibility to tuberculosis (TB). Study subjects and methods: 100 active TB patients, 75 household contacts, and 70 healthy controls were taken. VDR and iNOS mRNA levels were studied using real-time PCR. Serum VDR, cathelicidin, iNOS levels were measured using ELISA. Serum Vitamin D levels were measured in serum samples using chemiluminescence based immunoassay. NO was measured using colorimetry based kit. Results: VDR and iNOS mRNA levels were found to be lower in active TB group compared to household contacts and healthy controls (P=0.0001 and 0.005 respectively). The serum levels of Vitamin D were also found to be lower in active TB group as compared to healthy controls (P =0.001). Levels of cathelicidin and NO was higher in patient group as compared to other groups (p=0.01 and 0.5 respectively). However, the expression of VDR and iNOS and levels of vitamin D was significantly (P < 0.05) higher in household contacts compared to both active TB and healthy control groups. Inference: Higher levels of Vitamin D along with VDR and iNOS expression in household contacts as compared to patients suggest that vitamin D might have a protective role against TB which prevents activation of the disease. From our data, we can conclude that decreased vitamin D levels could be implicated in disease progression and we can use cathelicidin and NO as a biomarker for early diagnosis of pulmonary tuberculosis.Keywords: vitamin D, VDR, iNOS, tuberculosis
Procedia PDF Downloads 3044636 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii
Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi
Abstract:
Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.Keywords: full factorial design, neural network, nose radius, surface finish
Procedia PDF Downloads 3684635 Estimation of Lungs Physiological Motion for Patient Undergoing External Lung Irradiation
Authors: Yousif Mohamed Y. Abdallah
Abstract:
This is an experimental study deals with detection, measurement and analysis of the periodic physiological organ motion during external beam radiotherapy; to improve the accuracy of the radiation field placement, and to reduce the exposure of healthy tissue during radiation treatments. The importance of this study is to detect the maximum path of the mobile structures during radiotherapy delivery, to define the planning target volume (PTV) and irradiated volume during both inspiration and expiration period and to verify the target volume. In addition to its role to highlight the importance of the application of Intense Guided Radiotherapy (IGRT) methods in the field of radiotherapy. The results showed (body contour was equally (3.17 + 0.23 mm), for left lung displacement reading (2.56 + 0.99 mm) and right lung is (2.42 + 0.77 mm) which the radiation oncologist to take suitable countermeasures in case of significant errors. In addition, the use of the image registration technique for automatic position control is predicted potential motion. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, individualized assessment of tumor mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a single CT scan with a margin of 10 mm is clearly inappropriate.Keywords: respiratory motion, external beam radiotherapy, image processing, lung
Procedia PDF Downloads 5364634 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq
Procedia PDF Downloads 1774633 Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code
Authors: M. R. Akbari, M. Sadeghi, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Khorrami-Moghadam
Abstract:
Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region.Keywords: FLUKA code, neutron dose equivalent, proton therapy, thyroid gland
Procedia PDF Downloads 4254632 Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis
Authors: Liang Ning, Chung Hau Yin
Abstract:
Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future.Keywords: Laggera alata, eudesmane-type sesquiterpene, anti-angiogenesis, VEGF, angiopoietin, TIE2
Procedia PDF Downloads 2104631 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study
Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran
Abstract:
In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.Keywords: mean distance between failures, mileage-based reliability, reliability target appropriations, rolling stock reliability
Procedia PDF Downloads 2674630 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes
Authors: Qiming Zhang, Youda Ye, Qinxue Jiang
Abstract:
Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes
Procedia PDF Downloads 2524629 Oral Fluency: A Case Study of L2 Learners in Canada
Authors: Maaly Jarrah
Abstract:
Oral fluency in the target language is what many second language learners hope to achieve by living abroad. Research in the past has demonstrated the role informal environments play in improving L2 learners' oral fluency. However, living in the target country and being part of its community does not ensure the development of oral fluency skills. L2 learners' desire to communicate and access to speaking opportunities in the host community are key in achieving oral fluency in the target language. This study attempts to identify differences in oral fluency, specifically speech rate, between learners who communicate in the L2 outside the classroom and those who do not. In addition, as the desire to communicate is a crucial factor in developing oral fluency, this study investigates whether or not learners' desire to speak the L2 outside the classroom plays a role in their frequency of L2 use outside the classroom. Finally, given the importance of the availability of speaking opportunities for L2 learners in order to practice their speaking skills, this study reports on the participants' perceptions of the speaking opportunities accessible to them in the target community while probing whether or not their perceptions differed based on their oral fluency level and their desire to communicate. The results suggest that exposure to the target language and daily communication with the native speakers is strongly related to the development of learners' oral fluency. Moreover, the findings suggest that learners' desire to communicate affects their frequency of communication in their L2 outside the classroom. At the same time, all participants, regardless of their oral fluency level and their desire to communicate, asserted that speaking opportunities beyond the classroom are very limited. Finally, the study finds there are marked differences in the perceptions learners have regarding opportunities for learning offered by the same language program. After reporting these results, the study concludes with recommendations for ESL programs that serve international students.Keywords: ESL programs, L2 Learners, oral fluency, second language
Procedia PDF Downloads 4774628 Fusion Reactions at Low Bombarding Energies
Authors: Nitin Sharma, Rahbar Ali, Dharmendra Singh, R. P. Singh, S. Muralithar, M. Afzal Ansari
Abstract:
Heavy ion-induced reactions have gained significant attention in nuclear physics due to their potential to elucidate reaction mechanisms and explore practical applications. Hence, the present simulation work has been done with a projectile of ¹²C on ¹⁴²,¹⁴⁶Nd target at beam energy ranging from 4-7 MeV/nucleon. In the present work, measurement of excitation functions of evaporation residues produced via CF and/or ICF in the system ¹²C + ¹⁴²,¹⁴⁶Nd has been done. The evaporation residues ¹⁵⁰Dy (4n), ¹⁴⁹Dy (5n), and ¹⁴⁹Tb (p4n) are populated via xn/pxn emission channels and 147,146Gd (α3n/ α4n) via αxn emission channels in ¹²C + ¹⁴²,¹⁴⁶Nd system, confirmed by statistical model codes of PACE-4 and EMPIRE 3.2.2. And the evaporation residues ¹⁵⁴Dy (4n), ¹⁵³Dy (5n), and ¹⁵³Tb (p4n) are populated via xn/pxn emission channels and 150Gd (α4n) via αxn emission channels in ¹²C + ¹⁴⁶Nd system. The cross-sections of the above residues have been taken from PACE-4 and EMPIRE 3.2.2 and compared. Present work also suggests the production route for ¹⁴⁹Tb radioisotope via heavy-ion reactions. In the reaction ¹²C + ¹⁴²Nd, ¹⁴⁹Tb radioisotope has been produced, which is the only α-emitting radioisotope of Tb and is promising for targeted alpha therapy. Moreover, these reactions are important to understand the role of target deformation in fusion reactions above the Coulomb barrier as target ¹⁴²Nd is spherical and ¹⁴⁶Nd is deformed.Keywords: heavy-ion reactions, radioisotopes, nuclear physics, target deformation
Procedia PDF Downloads 74627 Prediction of Welding Induced Distortion in Thin Metal Plates Using Temperature Dependent Material Properties and FEA
Authors: Rehan Waheed, Abdul Shakoor
Abstract:
Distortion produced during welding of thin metal plates is a problem in many industries. The purpose of this research was to study distortion produced during welding in 2mm Mild Steel plate by simulating the welding process using Finite Element Analysis. Simulation of welding process requires a couple field transient analyses. At first a transient thermal analysis is performed and the temperature obtained from thermal analysis is used as input in structural analysis to find distortion. An actual weld sample is prepared and the weld distortion produced is measured. The simulated and actual results were in quite agreement with each other and it has been found that there is profound deflection at center of plate. Temperature dependent material properties play significant role in prediction of weld distortion. The results of this research can be used for prediction and control of weld distortion in large steel structures by changing different weld parameters.Keywords: welding simulation, FEA, welding distortion, temperature dependent mechanical properties
Procedia PDF Downloads 3924626 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2944625 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 4654624 Influence of IL-1β on Hamster Blastocyst Hatching via Regulation of Hatching Associated Proteases
Authors: Madhulika Pathak, Polani Seshagiri, Vani Venkatappa
Abstract:
Blastocyst hatching is an indispensable process for successful implantation. One of the major reasons for implantation failure in IVF clinic is poor quality of embryo, which are not development/hatching-competent. Therefore, attempts are required to develop or enhance the culture system with a molecule recapitulating the autocrine/paracrine factors containing the environment of in-vivo endometrial milieu. We have tried to explore the functional molecules involved in the hamster hatching phenomenon. Blastocyst hatching is governed by several molecules that are entwined and regulate this process, among which cytokines are known to be expressed and are still least explored. Two of such cytokines we have used for our study are IL-1β and its natural antagonist IL-1ra to understand the functional dynamics of cytokines involved in the hatching process. Using hamster, an intriguing experimental model for hatching behavior, we have shown the mRNA (qPCR) and protein (ICC) expression of IL-1β, IL-1ra and IL-1 receptor type 1 throughout all the stages of morula, blastocyst and hatched blastocyst. Post-asserting the expression, the functional role is shown by supplementation studies, where IL-1β supplementation showed enhancement in hatching level (IL-1β treated: 84.1 ± 4.2% vs control: 63.7 ± 3.1 %, N=11), further confirmed by the diminishing effect of IL-1ra on hatching rate (IL-1ra treated: 27.5 ± 11.1% vs control: 67.9 ± 3.1%). The exogenous supplementation of IL-1ra decreased the survival rate of embryos and affected the viability in dose-dependent manner, establishing the importance of IL-1β in blastocyst cell survival. Previously, the cathepsin L and B were established as the proteases that were involved in the hamster hatching process. The inducing effect of IL-1β was correlated with enhanced mRNA level, as analyzed by qPCR, for both CAT L (by 1.9 ± 0.5 fold) and CAT B (by 3.5 ± 0.1) fold which was diminished in presence of IL-1ra (Cat L by 88 percent and Cat B by 94 percent. Moreover, using a specific fluorescent substrate-based assay kit, the enzymatic activity of these proteases was found to be increased in presence of IL-1β (Cat L by 2.1 ± 0.1 fold and CAT B by 2.3 ± 0.7 fold) and was curtailed in presence of IL-1ra. These observations provide functional insights with respect to the involvement of cytokines in the hatching process. This has implications in understanding the hatching biology and improving the embryo development quality in IVF clinics.Keywords: Blastocyst, Cytokines, Hatching, Interleukin
Procedia PDF Downloads 1454623 The Priming Effect of Morphology, Phonology, Semantics, and Orthography in Mandarin Chinese: A Prime Paradigm Study
Authors: Bingqing Xu, Wenxing Shuai
Abstract:
This study investigates the priming effects of different Chinese compound words by native Mandarin speakers. There are lots of homonym, polysemy, and synonym in Chinese. However, it is unclear which kind of words have the biggest priming effect. Native Mandarin speakers were tested in a visual-word lexical decision experiment. The stimuli, which are all two-character compound words, consisted of two parts: primes and targets. Five types of relationships were used in all stimuli: morphologically related condition, in which the prime and the target contain the same morpheme; orthographically related condition, in which the target and the prime contain the different morpheme with the same form; phonologically related condition, in which the target and the prime contain the different morpheme with the same phonology; semantically related condition, in which the target and the prime contain the different morpheme with similar meanings; totally unrelated condition. The time since participants saw the target to respond was recorded. Analyses on reaction time showed that the average reaction time of morphologically related targets was much shorter than others, suggesting the morphological priming effect is the biggest. However, the reaction time of the phonologically related conditions was the longest, even longer than unrelated conditions. According to scatter plots analyses, 86.7% of participants had priming effects in morphologically related conditions, only 20% of participants had priming effects in phonologically related conditions. These results suggested that morphologically related conditions had the biggest priming effect. The orthographically and semantically related conditions also had priming effects, whereas the phonologically related conditions had few priming effects.Keywords: priming effect, morphology, phonology, semantics, orthography
Procedia PDF Downloads 1474622 The Use of Caricatures as a Means of Advertising: The Case of Sütaş
Authors: Güldane Zengin
Abstract:
Advertisers often make use of humorous elements in advertisements they create. Advertisements that contain such elements play a great role in creating awareness and attaining positive attitudes. Caricature, which is an element of humour, is interesting, eye catching, entertaining and memorable by its very nature. Because of these characteristics of caricatures, they are being used for advertising purposes. Advertisements with caricatures are spreading rapidly and embraced by consumers easily. Especially in the last ten years, companies in different sectors use advertisements with caricatures to publicize their products and services. These companies have different target audiences with different characteristics. They all have differences in opinions, attitudes, perceptions and buying behaviours. Target audiences’ brand choices depend on many different factors. Advertising is an important factor in brand choice. Using attention grabbing methods like advertising with caricatures affects their buying behaviours. This study examines the use of caricatures in Sütaş advertisements. Target audiences’ opinions, perceptions and attitudes about advertisements with caricatures are examined in this descriptive study.Keywords: advertising, advertisements with caricatures, caricature, communication, humour, Sütaş caricatures
Procedia PDF Downloads 2544621 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1024620 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder
Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen
Abstract:
Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.Keywords: natural language inference, explanation generation, variational auto-encoder, generative model
Procedia PDF Downloads 1514619 The Co-Existence of Multidominance and Movement in the Syntax of Chinese Bi-Comparatives
Authors: Yaqing Hu
Abstract:
This paper puts forward a syntactic analysis involving multidominance and rightward movement in Chinese bi-comparatives, as in 'Yuehan bi Mali gao (John is taller than Mary).' It is argued here that the predicate of comparison is a shared constituent in two small clauses, namely one for the target and one for the standard; and then it moves rightward to form a degree phrase with the comparative morpheme. This proposal comes from four aspects. First, the example above can also be expressed in this way, 'A: Yuehan he Mali, shui gao? (John and Mary, who is taller?) B: Yuehan gao./Yuehan geng gao. (John is taller).' This shows that the gradable adjective is predicated of the target. In addition, according to a constraint on Chinese bi-comparatives, namely the target and the standard must be arguments of the predicate simultaneously, it is not unreasonable to assume that the gradable adjective may also be predicated of the standard. Second, subcomparatives are totally disallowed in Chinese, as in '*zhe-zhang zhuozi bi zhe-zhang yizi kuan chang. (This table is longer than this chair is wide.)' In order to save it from ungrammaticality, the target and the standard should be compared along the same dimension denoted by the gradable adjective. It may follow that in Chinese comparatives, having equal roles in the same eventuality, the target and the standard bear the same thematic relationship with the predicate of comparison. Third, verb-copy can appear in Chinese bi-comparatives, as in 'Yuehan qi ma bi Mali qi ma qi de kuai. (John rides horses faster than Mary does.)' The predicate qi seems to form a small clause with both the target and the standard. This might be supporting evidence that both the target and the standard share the predicate of comparison. Fourth, Chinese comparatives do have comparative morphemes, as in 'Yuehan bi Mali geng gao. (John is taller than Mary)', which is semantically equivalent to the first example above. Thus, it follows that one feature of Chinese comparative morphemes is that they can remain overt or covert in the syntax, which will not affect semantics. This further shows that comparative morphemes in bi-comparatives may not be able to saturate the degree argument denoted by the predicate of comparison due to its optionality in the structure. These four aspects present a challenge to the Direct Analysis used in Chinese comparatives since this approach would presume that the target and the standard somehow show independency with the predicate in the syntax. Meanwhile, this study also rejects the previous analysis of multidomiance in bi-comparatives in which the degree phrase comprised of the comparative morpheme and the gradable adjective may be shared by the standard when the comparative morpheme is covert. This syntactic analysis proposed in this study will therefore offer a different perspective of how to treat degree phrase in Chinese comparatives and may offer evidence to argue whether there is degree phrase movement in bi-comparatives as in its English counterparts.Keywords: Chinese comparatives, degree phrase, movement, multidominance, syntactic analysis
Procedia PDF Downloads 3314618 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1574617 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases
Authors: Uzma Saqib, Mirza S. Baig
Abstract:
Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.Keywords: drug design, Nur77, MYD88, inflammation
Procedia PDF Downloads 3064616 ICAM1 Expression is Enhanced by TNFa through Histone Methylation in Human Brain Microvessel Cells
Authors: Ji-Young Choi, Jungjin Kim, Sang-Sun Yun, Sangmee Ahn Jo
Abstract:
Intracellular adhesion molecule1 (ICAM1) is a mediator of inflammation and involved in adhesion and transmigration of leukocytes to endothelial cells, resulting in enhancement of brain inflammation. We hypothesized that increase of ICAM1 expression in endothelial cells is an early step in the pathogenesis of brain diseases such as Alzheimer’s disease. Here, we report that ICAM1 expression is regulated by pro-inflammatory cytokine TNFa in human microvascular endothelial cell (HBMVEC). TNFa significantly increased ICAM1 mRNA and protein levels at the concentrations showing no cell toxicity. This increase was also shown in micro vessels of mouse brain 24 hours after treatment with TNFa (8 mg/kg, i.v). We then investigated the epigenetic mechanism involved in the induction of ICAM1 expression. Chromatin immunoprecipitation assay revealed that TNFa reduced methylation of histone3K9 (H3K9-2me) and histone3K27 (H3K27-3me), well-known modification as gene suppression, with in the ICAM1 promoter region. However, acetylation of H3K9 and H3K14, well-known modification as gene activation, was not changed by TNFa. Treatment of BIX01294, a specific inhibitor of histone methyltransferase G9a responsible for H3K9-2me, dramatically increased in ICAM1 mRNA and protein levels and overexpression of G9a gene suppressed TNFa-induced ICAM1 expression. In contrast, GSK126, an inhibitor of histone methyltransferase EZH2 responsible for H3K27-3me and valproic acid, an inhibitor of histone deacetylase (HDAC) did not affect ICAM1 expression. These results suggested that histone3 methylation is involved in ICAM1 repression. Moreover, TNFa or BIX01294-induced ICAM induction resulted in both enhancements in adhesion and transmigration of leukocyte on endothelial cell. This study demonstrates that TNFa upregulates ICAM1 expression through H3K9-2me and H3K27-3me within the ICAM1 promoter region, in which G9a is likely to play a pivotal role in ICAM1 transcription. Our study provides a novel mechanism for ICAM1 transcription regulation in HBMVEC.Keywords: ICAM1, TNFa, HBMVEC, H3K9-2me
Procedia PDF Downloads 3294615 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer
Authors: Ankan Roy, Niharika, Samir Kumar Patra
Abstract:
Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions
Procedia PDF Downloads 1324614 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 2714613 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3714612 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 1844611 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1704610 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms
Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin
Abstract:
This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.Keywords: machine learning, business models, convex analysis, online learning
Procedia PDF Downloads 1424609 Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices
Authors: Imad Eddine Charif, Wafaa Benchouk, Sidi Mohamed Mekelleche
Abstract:
The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind.Keywords: 1, 3-dipolar cycloaddition, density functional theory, nitrile oxides, regioselectivity, reactivity indices
Procedia PDF Downloads 1674608 Proactive Competence Management for Employees: A Bottom-up Process Model for Developing Target Competence Profiles Based on the Employee's Tasks
Authors: Maximilian Cedzich, Ingo Dietz Von Bayer, Roland Jochem
Abstract:
In order for industrial companies to continue to succeed in dynamic, globalized markets, they must be able to train their employees in an agile manner and at short notice in line with the exogenous conditions that arise. For this purpose, it is indispensable to operate a proactive competence management system for employees that recognizes qualification needs timely in order to be able to address them promptly through qualification measures. However, there are hardly any approaches to be found in the literature that includes systematic, proactive competence management. In order to help close this gap, this publication presents a process model that systematically develops bottom-up, future-oriented target competence profiles based on the tasks of the employees. Concretely, in the first step, the tasks of the individual employees are examined for assumed future conditions. In other words, qualitative scenarios are considered for the individual tasks to determine how they are likely to change. In a second step, these scenario-based future tasks are translated into individual future-related target competencies of the employee using a matrix of generic task properties. The final step pursues the goal of validating the target competence profiles formed in this way within the framework of a management workshop. This process model provides industrial companies with a tool that they can use to determine the competencies required by their own employees in the future and compare them with the actual prevailing competencies. If gaps are identified between the target and the actual, these qualification requirements can be closed in the short term by means of qualification measures.Keywords: dynamic globalized markets, employee competence management, industrial companies, knowledge management
Procedia PDF Downloads 189