Search results for: method of integral equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20537

Search results for: method of integral equations

20087 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters

Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale

Abstract:

This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.

Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories

Procedia PDF Downloads 203
20086 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: adult, basal metabolic rate, fao/who/unu, obesity, prediction equations

Procedia PDF Downloads 133
20085 Subjective Well-being, Beliefs, and Lifestyles of First Year University Students in the UK

Authors: Kaili C. Zhang

Abstract:

Mental well-being is an integral part of university students’ overall well-being and has been a matter of increasing concern in the UK. This study addressed the impact of university experience on students by investigating the changes students experience in their beliefs, lifestyles, and well-being during their first year of study, as well as the factors contributing to such changes. Using a longitudinal two-wave mixed method design, this project identified importantfactors that contribute to or inhibit these changes. Implications for universities across the UK are discussed.

Keywords: subjective well-being, beliefs, lifestyles, university students

Procedia PDF Downloads 201
20084 Chaos in a Stadium-Shaped 2-D Quantum Dot

Authors: Roger Yu

Abstract:

A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated.

Keywords: quantum dot, chaos, numerical method, eigenvalues

Procedia PDF Downloads 117
20083 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points

Procedia PDF Downloads 353
20082 Nano Liquid Thin Film Flow over an Unsteady Stretching Sheet

Authors: Prashant G. Metri

Abstract:

A numerical model is developed to study nano liquid film flow over an unsteady stretching sheet in the presence of hydromagnetic have been investigated. Similarity transformations are used to convert unsteady boundary layer equations to a system of non-linear ordinary differential equations. The resulting non-linear ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg and Newton-Raphson schemes. A relationship between film thickness β and the unsteadiness parameter S is found, the effect of unsteadiness parameter S, and the hydromagnetic parameter S, on the velocity and temperature distributions are presented. The present analysis shows that the combined effect of magnetic field and viscous dissipation has a significant influence in controlling the dynamics of the considered problem. Comparison with known results for certain particular cases is in excellent agreement.

Keywords: boundary layer flow, nanoliquid, thin film, unsteady stretching sheet

Procedia PDF Downloads 257
20081 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation

Authors: Kamel Al-Khaled

Abstract:

A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.

Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point

Procedia PDF Downloads 471
20080 Pricing European Continuous-Installment Options under Regime-Switching Models

Authors: Saghar Heidari

Abstract:

In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.

Keywords: continuous-installment option, European option, regime-switching model, finite element method

Procedia PDF Downloads 140
20079 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 131
20078 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice

Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani

Abstract:

In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.

Keywords: ¹⁷⁷Lu, breast cancer, compartmental modeling, dosimetry

Procedia PDF Downloads 151
20077 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 284
20076 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 153
20075 Analysis of Three-Dimensional Cracks in an Isotropic Medium by the Semi-Analytical Method

Authors: Abdoulnabi Tavangari, Nasim Salehzadeh

Abstract:

We presume a cylindrical medium that is under a uniform loading and there is a penny shaped crack located in the center of cylinder. In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, according to the RITZ method and by considering a cylindrical coordinate system as the main coordinate and a local polar coordinate, the mode-I SIF of threedimensional penny-shaped crack is obtained. In this method the unknown coefficients will be obtained with minimizing the potential energy that is including the strain energy and the external force work. By using the hook's law, stress fields will be obtained and then by using the Irvine equations, the amount of SIF will be obtained near the edge of the crack. This question has been solved for extreme medium in the Tada handbook and the result of the present research has been compared with that.

Keywords: three-dimensional cracks, penny-shaped crack, stress intensity factor, fracture mechanics, Ritz method

Procedia PDF Downloads 397
20074 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control

Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy

Abstract:

In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.

Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping

Procedia PDF Downloads 506
20073 Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices

Authors: Manideepa Saha, Jahnavi Chakrabarty

Abstract:

Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods.

Keywords: convergence, Gauss-Seidel, iterative method, Jacobi, SOR

Procedia PDF Downloads 189
20072 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 144
20071 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 304
20070 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations

Authors: Gilbert Makanda

Abstract:

The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.

Keywords: differential equations, knowledge acquisition, least squares, dynamical systems

Procedia PDF Downloads 424
20069 Degree of Approximation of Functions by Product Means

Authors: Hare Krishna Nigam

Abstract:

In this paper, for the first time, (E,q)(C,2) product summability method is introduced and two quite new results on degree of approximation of the function f belonging to Lip (alpha,r)class and W(L(r), xi(t)) class by (E,q)(C,2) product means of Fourier series, has been obtained.

Keywords: Degree of approximation, (E, q)(C, 2) means, Fourier series, Lebesgue integral, Lip (alpha, r)class, W(L(r), xi(t))class of functions

Procedia PDF Downloads 520
20068 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 302
20067 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method

Authors: Anthony P. Anies, Jose C. Muñoz

Abstract:

A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.

Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK

Procedia PDF Downloads 194
20066 Availability Analysis of Milling System in a Rice Milling Plant

Authors: P. C. Tewari, Parveen Kumar

Abstract:

The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.

Keywords: availability modeling, Markov process, milling system, rice milling plant

Procedia PDF Downloads 235
20065 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

Authors: Yohannes Yirga, Daniel Tesfay

Abstract:

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, and chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Keywords: heat and mass transfer, magnetohydrodynamics, nanofluid, fluid dynamics

Procedia PDF Downloads 291
20064 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method

Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy

Abstract:

With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.

Keywords: heat transfer, pde, taguchi optimization, SI/Ge

Procedia PDF Downloads 339
20063 Spatial Structure of First-Order Voronoi for the Future of Roundabout Cairo Since 1867

Authors: Ali Essam El Shazly

Abstract:

The Haussmannization plan of Cairo in 1867 formed a regular network of roundabout spaces, though deteriorated at present. The method of identifying the spatial structure of roundabout Cairo for conservation matches the voronoi diagram with the space syntax through their geometrical property of spatial convexity. In this initiative, the primary convex hull of first-order voronoi adopts the integral and control measurements of space syntax on Cairo’s roundabout generators. The functional essence of royal palaces optimizes the roundabout structure in terms of spatial measurements and the symbolic voronoi projection of 'Tahrir Roundabout' over the Giza Nile and Pyramids. Some roundabouts of major public and commercial landmarks surround the pole of 'Ezbekia Garden' with a higher control than integral measurements, which filter the new spatial structure from the adjacent traditional town. Nevertheless, the least integral and control measures correspond to the voronoi contents of pollutant workshops and the plateau of old Cairo Citadel with the visual compensation of new royal landmarks on top. Meanwhile, the extended suburbs of infinite voronoi polygons arrange high control generators of chateaux housing in 'garden city' environs. The point pattern of roundabouts determines the geometrical characteristics of voronoi polygons. The measured lengths of voronoi edges alternate between the zoned short range at the new poles of Cairo and the distributed structure of longer range. Nevertheless, the shortest range of generator-vertex geometry concentrates at 'Ezbekia Garden' where the crossways of vast Cairo intersect, which maximizes the variety of choice at different spatial resolutions. However, the symbolic 'Hippodrome' which is the largest public landmark forms exclusive geometrical measurements, while structuring a most integrative roundabout to parallel the royal syntax. Overview of the symbolic convex hull of voronoi with space syntax interconnects Parisian Cairo with the spatial chronology of scattered monuments to conceive one universal Cairo structure. Accordingly, the approached methodology of 'voronoi-syntax' prospects the future conservation of roundabout Cairo at the inferred city-level concept.

Keywords: roundabout Cairo, first-order Voronoi, space syntax, spatial structure

Procedia PDF Downloads 504
20062 Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium

Authors: Hamid Maidat, Khedidja Bouhadef, Djamel Eddine Ameziani, Azzedine Abdedou

Abstract:

This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.

Keywords: local thermal non equilibrium model, mixed convection, porous medium, power generation

Procedia PDF Downloads 606
20061 Bifurcation Curve for Semipositone Problem with Minkowski-Curvature Operator

Authors: Shao-Yuan Huang

Abstract:

We study the shape of the bifurcation curve of positive solutions for the semipositone problem with the Minkowski-curvature operator. The Minkowski-curvature problem plays an important role in certain fundamental issues in differential geometry and in the special theory of relativity. In addition, it is well known that studying the multiplicity of positive solutions is equivalent to studying the shape of the bifurcation curve. By the shape of the bifurcation curve, we can understand the change in the multiplicity of positive solutions with varying parameters. In this paper, our main technique is a time-map method used in Corsato's PhD Thesis. By this method, studying the shape of the bifurcation curve is equivalent to studying the shape of a certain function T with improper integral. Generally speaking, it is difficult to study the shape of T. So, in this paper, we consider two cases that the nonlinearity is convex or concave. Thus we obtain the following results: (i) If f''(u) < 0 for u > 0, then the bifurcation curve is C-shaped. (ii) If f''(u) > 0 for u > 0, then there exists η>β such that the bifurcation curve does not exist for 0 η. Furthermore, we prove that the bifurcation is C-shaped for L > η under a certain condition.

Keywords: bifurcation curve, Minkowski-curvature problem, positive solution, time-map method

Procedia PDF Downloads 104
20060 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique

Authors: M. A. Ansari, A. Hussain, A. Uddin

Abstract:

A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.

Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir

Procedia PDF Downloads 160
20059 Simulation and Analysis of Inverted Pendulum Controllers

Authors: Sheren H. Salah

Abstract:

The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.

Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)

Procedia PDF Downloads 555
20058 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique

Authors: Abhilash Sahu, Amit Priyadarshi

Abstract:

In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.

Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution

Procedia PDF Downloads 234