Search results for: high energy materials
28954 Numerical Investigation of Thermal Energy Storage System with Phase Change Materials
Authors: Mrityunjay Kumar Sinha, Mayank Srivastava
Abstract:
The position of interface and temperature variation of phase change thermal energy storage system under constant heat injection and radiative heat injection is analysed during charging/discharging process by Heat balance integral method. The charging/discharging process is solely governed by conduction. Phase change material is kept inside a rectangular cavity. Time-dependent fixed temperature and radiative boundary condition applied on one wall, all other walls are thermally insulated. Interface location and temperature variation are analysed by using MATLAB.Keywords: conduction, melting/solidification, phase change materials, Stefan’s number
Procedia PDF Downloads 39228953 LEED Empirical Evidence in Northern and Southern Europe
Authors: Svetlana Pushkar
Abstract:
The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points
Procedia PDF Downloads 25228952 Photocatalytic Hydrogen Production from Butanol over Ag/TiO2
Authors: Thabelo Nelushi, Michael Scurrell, Tumelo Seadira
Abstract:
Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation.Keywords: butanol, hydrogen production, silver particles, TiO2 nanoparticles
Procedia PDF Downloads 21028951 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage
Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo
Abstract:
Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.Keywords: kaolinite, microencapsulation, PCM, thermal energy storage
Procedia PDF Downloads 12928950 Consideration of Starlight Waves Redshift as Produced by Friction of These Waves on Its Way through Space
Authors: Angel Pérez Sánchez
Abstract:
In 1929, a light redshift was discovered in distant galaxies and was interpreted as produced by galaxies moving away from each other at high speed. This interpretation led to the consideration of a new source of energy, which was called Dark Energy. Redshift is a loss of light wave frequency produced by galaxies moving away at high speed, but the loss of frequency can also be produced by the friction of light waves on their way to Earth. This friction is impossible because outer space is empty, but if it were not empty and a medium existed in this empty space, it would be possible. The consequences would be extraordinary because Universe acceleration and Dark Energy would be in doubt. This article presents evidence that empty space is actually a medium occupied by different particles, among them the most significant would-be Graviton or Higgs Boson, because let's not forget that gravity also affects empty space.Keywords: Big Bang, dark energy, doppler effect, redshift, starlight frequency reduction, universe acceleration
Procedia PDF Downloads 6328949 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide
Authors: M. Yusefzad
Abstract:
Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.Keywords: power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations
Procedia PDF Downloads 26428948 Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials
Authors: Marine Shavlakadze
Abstract:
From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities.Keywords: manganese, fertilizers, non-ballast, micro- fertilizers
Procedia PDF Downloads 26728947 Optimum Switch Temperature for Phase Change Materials in Buildings
Authors: El Hadi Bouguerra, Nouredine Retiel
Abstract:
To avoid or at least to attenuate the global warming, it is essential to reduce the energy consumption of the buildings where the biggest potential of savings exists. The impending danger can come from the increase in the needs of air conditioning not only because of the climate warming but also the fast equipping of emerging or developing countries. Passive solutions exist and others are in promising development and therefore, must be applied wherever it is possible. Even if they do not always avoid the resort to an active cooling (mechanical), they allow lowering the load at an acceptable level which can be possibly taken in relay by the renewable energies. These solutions have the advantage to be relatively less expensive and especially adaptable to the existing housing. However, it is the internal convection resistance that controls the heat exchange between the phase change materials (PCM) and the indoor temperature because of the very low heat coefficients of natural convection. Therefore, it is reasonable to link the switch temperature Tm to the temperature of the substrate (walls and ceiling) because conduction heat transfer is dominant. In this case, external conditions (heat sources such as solar irradiation and ambient temperatures) and conductivities of envelope constituents are the most important factors. The walls are not at the same temperature year round; therefore, it is difficult to set a unique switch temperature for the whole season, making the average values a key parameter. With this work, the authors’ aim is to see which parameters influence the optimum switch temperature of a PCM and additionally, if a better selection of PCMs relating to their optimum temperature can enhance their energetic performances.Keywords: low energy building, energy conservation, phase change materials, PCM
Procedia PDF Downloads 25728946 Technological and Economic Investigation of Concentrated Photovoltaic and Thermal Systems: A Case Study of Iran
Authors: Moloud Torkandam
Abstract:
Any cities must be designed and built in a way that minimizes their need for fossil fuel. Undoubtedly, the necessity of accepting this principle in the previous eras is undeniable with respect to the mode of constructions. Perhaps only due to the great diversity of materials and new technologies in the contemporary era, such a principle in buildings has been forgotten. The question of optimizing energy consumption in buildings has attracted a great deal of attention in many countries and, in this way, they have been able to cut down the consumption of energy up to 30 percent. The energy consumption is remarkably higher than global standards in our country, and the most important reason is the undesirable state of buildings from the standpoint of energy consumption. In addition to providing the means to protect the natural and fuel resources for the future generations, reducing the use of fossil energies may also bring about desirable outcomes such as the decrease in greenhouse gases (whose emissions cause global warming, the melting of polar ice, the rise in sea level and the climatic changes of the planet earth), the decrease in the destructive effects of contamination in residential complexes and especially urban environments and preparation for national self-sufficiency and the country’s independence and preserving national capitals. This research realize that in this modern day and age, living sustainably is a pre-requisite for ensuring a bright future and high quality of life. In acquiring this living standard, we will maintain the functions and ability of our environment to serve and sustain our livelihoods. Electricity is now an integral part of modern life, a basic necessity. In the provision of electricity, we are committed to respecting the environment by reducing the use of fossil fuels through the use of proven technologies that use local renewable and natural resources as its energy source. As far as this research concerned it is completely necessary to work on different type of energy producing such as solar and CPVT system.Keywords: energy, photovoltaic, termal system, solar energy, CPVT
Procedia PDF Downloads 8228945 The Enlightenment of the Ventilation System in Chinese Traditional Residence to Architecture Design
Authors: Wu Xingchun, Chen Xi
Abstract:
Nowadays, China's building energy consumption constitutes 25% of the total energy consumption, half of which was caused by air conditioning in both summer and winter. The ventilation system in Chinese traditional residence, which is totally passive and environmentally friendly, works effectively to create comfortable indoor environment. The research on the ventilation system in Chinese traditional residence can provide advancements to architecture design and energy savings to the society. Through field investigation, case analysis, strategy proposing and other methods, it comes out that the location and layout, the structure system and the design of atrium are the most important elements for a good ventilation system. Taking every factor into consideration, techniques are deployed extensively such as the organization of draught, the design of the thermal pressure ventilation system and the application of modern materials. With the enlightenment of the ventilation system in Chinese traditional residence, we can take effective measures to achieve low energy consumption and sustainable architecture.Keywords: ventilation system, chinese traditional residence, energy consumption, sustainable architecture
Procedia PDF Downloads 70728944 Wind Power Assessment for Turkey and Evaluation by APLUS Code
Authors: Ibrahim H. Kilic, A. B. Tugrul
Abstract:
Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.Keywords: APLUS, energy policy, renewable energy, wind power, Turkey
Procedia PDF Downloads 30328943 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications
Authors: Mahmoud Elrouby
Abstract:
Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.Keywords: electrodeposition, metal chacogenides, semiconductors, applications
Procedia PDF Downloads 29828942 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications
Authors: G. Korotcenkov, V. Brinzari, B. K. Cho
Abstract:
The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.Keywords: energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability
Procedia PDF Downloads 23228941 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation
Authors: Ying Xin, Shigeki Kametani
Abstract:
This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system
Procedia PDF Downloads 29828940 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran
Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi
Abstract:
This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean
Procedia PDF Downloads 33428939 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend
Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar
Abstract:
Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend
Procedia PDF Downloads 20228938 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage
Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti
Abstract:
Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage
Procedia PDF Downloads 16028937 Adsorption of Acetone Vapors by SBA-16 and MCM-48 Synthesized from Rice Husk Ash
Authors: Wanting Zeng, Hsunling Bai
Abstract:
Silica was extracted from agriculture waste rice husk ash (RHA) and was used as the silica source for synthesis of RMCM-48 and RSBA-16. An alkali fusion process was utilized to separate silicate supernatant and the sediment effectively. The CTAB/Si and F127/Si molar ratio was employed to control the structure properties of the obtained RMCM-48 and RSBA-16 materials. The N2 adsorption-desorption results showed the micro-mesoporous RSBA-16 possessed high specific surface areas (662-1001 m2/g). All the obtained RSBA-16 materials were applied as the adsorbents for acetone adsorption. And the breakthrough tests clearly revealed that the RSBA-16(0.004) materials could achieve the highest acetone adsorption capacity of 186 mg/g under 1000 ppmv acetone vapor concentration at 25oC, which was also superior to ZSM-5 (71mg/g) and MCM-41 (157mg/g) under same test conditions. This can help to reduce the solid waste and the high adsorption performance of the obtained materials could consider as potential adsorbents for acetone adsorption.Keywords: acetone, adsorption, micro-mesoporous material, rice husk ash (RHA), RSBA-16
Procedia PDF Downloads 34228936 Wood as a Climate Buffer in a Supermarket
Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø
Abstract:
Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast
Procedia PDF Downloads 21528935 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137
Authors: Abdulsalam M. Alhawsawi
Abstract:
Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137
Procedia PDF Downloads 11628934 Thermosalient Effect of an Organic Aminonitrile and its Derivatives
Authors: Lukman O. Alimi, Vincent J. Smith, Leonard J. Barbour
Abstract:
The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or a ballistic event1. Thermosalient compounds, colloquially known as ‘jumping crystals’ are promising materials for fabrication of actuators that are also being considered as materials for clean energy conversion because of their capabilities to convert thermal energy into mechanical motion directly. Herein, an organic aminonitrile and its derivatives have been probed by a combination of structural, microscopic and thermoanalytical techniques. Crystals of these compounds were analysed by means of single crystal XRD and hotstage microscopy in the temperature range of 100 to 298 K and found to exhibit the thermosalient effect. We also carried out differential scanning calorimetric analysis at the temperature corresponding to that at which the crystal jumps as observed under a hotstage microscope.Keywords: aminonitrile, jumping crystal, self actuation, thermosalient effect
Procedia PDF Downloads 43528933 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System
Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib
Abstract:
More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase
Procedia PDF Downloads 40828932 Morphological Characteristic of Hybrid Thin Films
Authors: Azyuni Aziz, Syed A. Malik, Shahrul Kadri Ayop, Fatin Hana Naning
Abstract:
Currently, organic-inorganic hybrid thin films have attracted researchers to explore them, where these thin films can give a lot of benefits. Hybrid thin films are thin films that consist of inorganic and organic materials. Inorganic and organic materials give high efficiency and low manufacturing cost in some applications such as solar cells application, furthermore, organic materials are environment-friendly. In this study, poly (3-hexylthiophene) was choosing as organic material which combined with inorganic nanoparticles, Cadmium Sulfide (CdS) quantum dots. Samples were prepared using new technique, Angle Lifting Deposition (ALD) at different weight percentage. All prepared samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) with Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscopy (AFM) to study surface of samples and determine their surface roughness. Results show that these inorganic nanoparticles have affected the surface of samples and surface roughness of samples increased due to increasing of weight percentage of CdS in the thin films samples.Keywords: AFM, CdS, FESEM-EDX, hybrid thin films, P3HT
Procedia PDF Downloads 50228931 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries
Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass
Abstract:
Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings
Procedia PDF Downloads 12128930 An Approach to Determine Proper Daylighting Design Solution Considering Visual Comfort and Lighting Energy Efficiency in High-Rise Residential Building
Authors: Zehra Aybike Kılıç, Alpin Köknel Yener
Abstract:
Daylight is a powerful driver in terms of improving human health, enhancing productivity and creating sustainable solutions by minimizing energy demand. A proper daylighting system allows not only a pleasant and attractive visual and thermal environment, but also reduces lighting energy consumption and heating/cooling energy load with the optimization of aperture size, glazing type and solar control strategy, which are the major design parameters of daylighting system design. Particularly, in high-rise buildings where large openings that allow maximum daylight and view out are preferred, evaluation of daylight performance by considering the major parameters of the building envelope design becomes crucial in terms of ensuring occupants’ comfort and improving energy efficiency. Moreover, it is increasingly necessary to examine the daylighting design of high-rise residential buildings, considering the share of residential buildings in the construction sector, the duration of occupation and the changing space requirements. This study aims to identify a proper daylighting design solution considering window area, glazing type and solar control strategy for a high-residential building in terms of visual comfort and lighting energy efficiency. The dynamic simulations are carried out/conducted by DIVA for Rhino version 4.1.0.12. The results are evaluated with Daylight Autonomy (DA) to demonstrate daylight availability in the space and Daylight Glare Probability (DGP) to describe the visual comfort conditions related to glare. Furthermore, it is also analyzed that the lighting energy consumption occurred in each scenario to determine the optimum solution reducing lighting energy consumption by optimizing daylight performance. The results revealed that it is only possible that reduction in lighting energy consumption as well as providing visual comfort conditions in buildings with the proper daylighting design decision regarding glazing type, transparency ratio and solar control device.Keywords: daylighting , glazing type, lighting energy efficiency, residential building, solar control strategy, visual comfort
Procedia PDF Downloads 17628929 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal
Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi
Abstract:
The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation
Procedia PDF Downloads 6828928 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites
Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias
Abstract:
Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance
Procedia PDF Downloads 25428927 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance
Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher
Abstract:
The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis
Procedia PDF Downloads 4528926 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry
Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan
Abstract:
Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.Keywords: energy, renewable energy, selective surface, solar collector
Procedia PDF Downloads 20728925 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave
Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib
Abstract:
Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.Keywords: hybrid, marine current energy, tidal turbine, wave turbine
Procedia PDF Downloads 361