Search results for: flow condition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8146

Search results for: flow condition

7696 Numerical Investigation of Multiphase Flow in Pipelines

Authors: Gozel Judakova, Markus Bause

Abstract:

We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.

Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow

Procedia PDF Downloads 301
7695 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 77
7694 Vibration Propagation in Structures Through Structural Intensity Analysis

Authors: Takhchi Jamal, Ouisse Morvan, Sadoulet-Reboul Emeline, Bouhaddi Noureddine, Gagliardini Laurent, Bornet Frederic, Lakrad Faouzi

Abstract:

Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths.

Keywords: structural intensity, power flow, helmholt decomposition, irrotational intensity

Procedia PDF Downloads 150
7693 Blue Whale Body Condition from Photographs Taken over a 14-Year Period in the North East Pacific: Annual Variations and Connection to Measures of Ocean Productivity

Authors: Rachel Wachtendonk, John Calambokidis, Kiirsten Flynn

Abstract:

Large marine mammals can serve as an indicator of the overall state of the environment due to their long lifespan and apex position in marine food webs. Reductions in prey, driven by changes in environmental conditions can have resounding impacts on the trophic system as a whole; this can manifest in reduced fat stores that are visible on large whales. Poor health can lead to reduced survivorship and fitness, both of which can be detrimental to a recovering population. A non-invasive technique was used for monitoring blue whale health and for seeing if it changes with ocean conditions. Digital photographs of blue whales taken in the NE Pacific by Cascadia Research and collaborators from 2005-2018 (n=3,545) were scored for overall body condition based on visible vertebrae and body shape on a scale of 0-3 where a score of 0 indicated best body condition and a score of 3 indicated poorest. The data was analyzed to determine if there were patterns in the health of whales across years and whether overall poor health was related to oceanographic conditions and predictors of prey abundance on the California coast. The year was a highly significant factor in body condition (Chi-Square, p<0.001). The proportion of whales showing poor body condition (scores 2 & 3) overall was 33% but by year varied widely from a low of 18% (2008) to a high of 55% (2015). The only two years where >50% of animals had poor body condition were 2015 and 2017 (no other year was above 45%). The 2015 maximum proportion of whales in poor body condition coincide with the marine heat wave that affected the NE Pacific 2014-16 and impacted other whale populations. This indicates that the scoring method was an effective way to evaluate blue whale health and how they respond to a changing ocean.

Keywords: blue whale, body condition, environmental variability, photo-identification

Procedia PDF Downloads 182
7692 Numerical Simulation of the Effect of Single and Dual Synthetic Jet on Stall Phenomenon On NACA (National Advisory Committee for Aeronautics) GA(W)-2 Airfoil

Authors: Abbasali Abouei Mehrizi, Hamid Hassanzadeh Afrouzi

Abstract:

Reducing the drag force increases the efficiency of the aircraft and its better performance. Flow control methods delay the phenomenon of flow separation and consequently reduce the reversed flow phenomenon in the separation region and enhance the performance of the lift force while decreasing the drag force and thus improving the aircraft efficiency. Flow control methods can be divided into active and passive types. The use of synthetic jets actuator (SJA) used in this study for NACA GA (W) -2 airfoil is one of the active flow control methods to prevent stall phenomenon on the airfoil. In this research, the relevant airfoil in different angles of attack with and without jets has been compared by OpenFOAM. Also, after achieving the proper SJA position on the airfoil suction surface, the simultaneous effect of two SJAs has been discussed. It was found to have the best effect at 12% chord (C), close to the airfoil’s leading edge (LE). At 12% chord, SJA decreases the drag significantly with increasing lift, and also, the average lift increase was higher than other situations and was equal to 10.4%. The highest drag reduction was about 5% in SJA=0.25C. Then, due to the positive effects of SJA in the 12% and 25% chord regions, these regions were considered for applying dual jets in two post-stall angles of attack, i.e., 16° and 22°.

Keywords: active and passive flow control methods, computational fluid dynamics, flow separation, synthetic jet

Procedia PDF Downloads 49
7691 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: gas turbine, blade tip, heat transfer, unsteady wakes

Procedia PDF Downloads 344
7690 Oxygenation in Turbulent Flows over Block Ramps

Authors: Thendiyath Roshni, Stefano Pagliara

Abstract:

Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region.

Keywords: aeration, block ramps, oxygenation, turbulent flows

Procedia PDF Downloads 152
7689 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: unsteady flow, axial turbine, wake, aerodynamic force, loss

Procedia PDF Downloads 275
7688 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing

Authors: Andrew Hall, Paul Clarkson

Abstract:

Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.

Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change

Procedia PDF Downloads 177
7687 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery as bearing is important in order to improve its stability of works. Acoustic emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that the success of vibration analysis does not take place below 100 rpm rotational speed. This because the energy generated below 100 rpm rotational speed is not detectable using conventional vibration. From this pint, this paper has presented a focused review of using acoustic emission techniques for monitoring bearings condition.

Keywords: condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis

Procedia PDF Downloads 293
7686 Robust Design of Electroosmosis Driven Self-Circulating Micromixer for Biological Applications

Authors: Bahram Talebjedi, Emily Earl, Mina Hoorfar

Abstract:

One of the issues that arises with microscale lab-on-a-chip technology is that the laminar flow within the microchannels limits the mixing of fluids. To combat this, micromixers have been introduced as a means to try and incorporate turbulence into the flow to better aid the mixing process. This study presents an electroosmotic micromixer that balances vortex generation and degeneration with the inlet flow velocity to greatly increase the mixing efficiency. A comprehensive parametric study was performed to evaluate the role of the relevant parameters on the mixing efficiency. It was observed that the suggested micromixer is perfectly suited for biological applications due to its low pressure drop (below 10 Pa) and low shear rate. The proposed micromixer with optimized working parameters is able to attain a mixing efficiency of 95% in a span of 0.5 seconds using a frequency of 10 Hz, a voltage of 0.7 V, and an inlet velocity of 0.366 mm/s.

Keywords: microfluidics, active mixer, pulsed AC electroosmosis flow, micromixer

Procedia PDF Downloads 112
7685 Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber

Authors: Vladislav A. Nazukin, Valery G. Avgustinovich, Vakhtang V. Tsatiashvili

Abstract:

The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations.

Keywords: DES simulation, swirler, vortical structures, combustion chamber

Procedia PDF Downloads 336
7684 Increased Reaction and Movement Times When Text Messaging during Simulated Driving

Authors: Adriana M. Duquette, Derek P. Bornath

Abstract:

Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.

Keywords: simulated driving, text messaging, reaction time, movement time

Procedia PDF Downloads 500
7683 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 138
7682 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined

Procedia PDF Downloads 120
7681 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19

Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane

Abstract:

The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.

Keywords: network analysis, building simulation, COVID-19

Procedia PDF Downloads 139
7680 Investigation of Growth Yield and Antioxidant Activity of Monascus purpureus Extract Isolated from Stirred Tank Bioreactor

Authors: M. Pourshirazi, M. Esmaelifar, A. Aliahmadi, F. Yazdian, A. S. Hatamian Zarami, S. J. Ashrafi

Abstract:

Monascus purpureus is an antioxidant-producing fungus whose secondary metabolites can be used in drug industries. The growth yield and antioxidant activity of extract were investigated in 3-L liquid fermentation media in a 5-L stirred tank bioreactor (STD) at 30°C, pH 5.93 and darkness for 4 days with 150 rpm agitation and 40% dissolved oxygen. Results were compared to extract isolated from Erlenmeyer flask with the same condition. The growth yield was 0.21 and 0.17 in STD condition and Erlenmeyer flask, respectively. Furthermore, the IC50 of DPPH scavenging activity was 256.32 µg/ml and 150.43 µg/ml for STD extract and flask extract, respectively. Our data demonstrated that transferring the growth condition into the STD caused an increase in growth yield but not in antioxidant activity. Accordingly, there is no relationship between growth rate and secondary metabolites formation. More studies are needed to determine the mass transfer coefficient and also evaluating the hydrodynamic condition have to be done in the future studies.

Keywords: Monascus purpureus, bioreactor, antioxidant, growth yield

Procedia PDF Downloads 378
7679 Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD

Authors: S. C. Gupta

Abstract:

The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out.

Keywords: wind flow, buildings, static pressure wind tunnel testing, CFD

Procedia PDF Downloads 475
7678 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, DU96-W180 airfoil, flow streams

Procedia PDF Downloads 354
7677 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction

Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie

Abstract:

Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.

Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches

Procedia PDF Downloads 187
7676 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity

Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang

Abstract:

In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.

Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software

Procedia PDF Downloads 334
7675 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide

Procedia PDF Downloads 196
7674 Optimization Method of the Number of Berth at Bus Rapid Transit Stations Based on Passenger Flow Demand

Authors: Wei Kunkun, Cao Wanyang, Xu Yujie, Qiao Yuzhi, Liu Yingning

Abstract:

The reasonable design of bus parking spaces can improve the traffic capacity of the station and reduce traffic congestion. In order to reasonably determine the number of berths at BRT (Bus Rapid Transit) stops, it is based on the actual bus rapid transit station observation data, scheduling data, and passenger flow data. Optimize the number of station berths from the perspective of optimizing the balance of supply and demand at the site. Combined with the classical capacity calculation model, this paper first analyzes the important factors affecting the traffic capacity of BRT stops by using SPSS PRO and MATLAB programming software, namely the distribution of BRT stops and the distribution of BRT stop time. Secondly, the method of calculating the number of the classic human capital management (HCM) model is optimized based on the actual passenger demand of the station, and the method applicable to the actual number of station berths is proposed. Taking Gangding Station of Zhongshan Avenue Bus Rapid Transit Corridor in Guangzhou as an example, based on the calculation method proposed in this paper, the number of berths of sub-station 1, sub-station 2 and sub-station 3 is 2, which reduces the road space of the station by 33.3% compared with the previous berth 3 of each sub-station, and returns to social vehicles. Therefore, under the condition of ensuring the passenger flow demand of BRT stations, the road space of the station is reduced, and the road is returned to social vehicles, the traffic capacity of social vehicles is improved, and the traffic capacity and efficiency of the BRT corridor system are improved as a whole.

Keywords: urban transportation, bus rapid transit station, HCM model, capacity, number of berths

Procedia PDF Downloads 76
7673 Computational Study of Passive Scalar Diffusion of a Counterflowing round Jet

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Georges Le Palec

Abstract:

Round jets have been widely studied due to their important application in industry. Many configurations of round jet were encountered in literature as free jet, co-flow jet, couterflowing jet and cross flow jet. In this paper, we are concerned with turbulent round jet in uniform counterflow stream which is known to enhance mixing and dispersion efficiency owing to flow reversal. This type of flow configuration is a typical application in environmental engineering such as the disposal of wastewater into seas or rivers. A computational study of a turbulent circular jet discharging into a uniform counterflow is conducted in order to investigate the characteristics of the diffusion field of the jet effluent. The investigation is carried out for three different cases of jet-to-current velocity ratios; low, medium and high velocity ratios. The Reynolds Stress Model (RSM) is used in the comparison with available experimental measurements. The decay of the center line velocity and the dynamic proprieties of the flow together with the centerline dilution of the passive scalar and the other characteristics of the concentration field are computationally analyzed in this paper.

Keywords: Counterflow stream, jet, velocity, concentration

Procedia PDF Downloads 361
7672 Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle

Authors: Sayed A. Elsayed, Emad Z. Ibrahim, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: wing-shaped tubes, cross-flow cooling, staggered arrangement, CFD

Procedia PDF Downloads 346
7671 Thermal Regulation of Channel Flows Using Phase Change Material

Authors: Kira Toxopeus, Kamran Siddiqui

Abstract:

Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.

Keywords: channel flow, phase change material, thermal energy storage, thermal regulation

Procedia PDF Downloads 116
7670 The Extraction and Stripping of Hg(II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg(II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a counter current flow. Samples were kept in the outlet of feed and stripping solution for 1 hour and characterized concentration of Hg(II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg(II) were 98% and 44.2%, respectively.

Keywords: Hg(II), hollow fiber contactor, produced water, wastewater treatment

Procedia PDF Downloads 376
7669 Droplet Entrainment and Deposition in Horizontal Stratified Two-Phase Flow

Authors: Joshua Kim Schimpf, Kyun Doo Kim, Jaseok Heo

Abstract:

In this study, the droplet behavior of under horizontal stratified flow regime for air and water flow in horizontal pipe experiments from a 0.24 m, 0.095 m, and 0.0486 m size diameter pipe are examined. The effects of gravity, pipe diameter, and turbulent diffusion on droplet deposition are considered. Models for droplet entrainment and deposition are proposed that considers developing length. Validation for experimental data dedicated from the REGARD, CEA and Williams, University of Illinois, experiment were performed using SPACE (Safety and Performance Analysis Code for Nuclear Power Plants).

Keywords: droplet, entrainment, deposition, horizontal

Procedia PDF Downloads 354
7668 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance

Authors: Huilan Yao, Huaixin Zhang

Abstract:

Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.

Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation

Procedia PDF Downloads 240
7667 Buoyancy Effects in Pressure Retarded Osmosis with Extremely High Draw Solution Concentration

Authors: Ivonne Tshuma, Ralf Cord-Ruwisch, Wendell Ela

Abstract:

Water crisis is a world-wide problem because of population growth and climate change. Hence, desalination is a solution to water scarcity, which threatens the world. Reverse osmosis (RO) is the most used technique for desalination; unfortunately, this process, usually requires high-pressure requirement hence requires a lot of energy about 3 – 5.5 KWhr/m³ of electrical energy. The pressure requirements of RO can be alleviated by the use of PRO (pressure retarded osmosis) to drive the RO process. This paper proposes a process of utilizing the energy directly from PRO to drive an RO process. The paper mostly analyses the PRO process parameters such as cross-flow velocity, density, and buoyancy and how these have an effect on PRO hence ultimately the RO process. The experimental study of the PRO with various feed solution concentrations and cross-flow velocities at fixed applied pressure with different orientations of the PRO cell was performed. The study revealed that without cross-flow velocity, buoyancy effects were observed but not with cross-flow velocity.

Keywords: cross-flow velocity, pressure retarded osmosis, density, buoyancy

Procedia PDF Downloads 118