Search results for: flanker task
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2104

Search results for: flanker task

1654 Translation Directionality: An Eye Tracking Study

Authors: Elahe Kamari

Abstract:

Research on translation process has been conducted for more than 20 years, investigating various issues and using different research methodologies. Most recently, researchers have started to use eye tracking to study translation processes. They believed that the observable, measurable data that can be gained from eye tracking are indicators of unobservable cognitive processes happening in the translators’ mind during translation tasks. The aim of this study was to investigate directionality in translation processes through using eye tracking. The following hypotheses were tested: 1) processing the target text requires more cognitive effort than processing the source text, in both directions of translation; 2) L2 translation tasks on the whole require more cognitive effort than L1 tasks; 3) cognitive resources allocated to the processing of the source text is higher in L1 translation than in L2 translation; 4) cognitive resources allocated to the processing of the target text is higher in L2 translation than in L1 translation; and 5) in both directions non-professional translators invest more cognitive effort in translation tasks than do professional translators. The performance of a group of 30 male professional translators was compared with that of a group of 30 male non-professional translators. All the participants translated two comparable texts one into their L1 (Persian) and the other into their L2 (English). The eye tracker measured gaze time, average fixation duration, total task length and pupil dilation. These variables are assumed to measure the cognitive effort allocated to the translation task. The data derived from eye tracking only confirmed the first hypothesis. This hypothesis was confirmed by all the relevant indicators: gaze time, average fixation duration and pupil dilation. The second hypothesis that L2 translation tasks requires allocation of more cognitive resources than L1 translation tasks has not been confirmed by all four indicators. The third hypothesis that source text processing requires more cognitive resources in L1 translation than in L2 translation and the fourth hypothesis that target text processing requires more cognitive effort in L2 translation than L1 translation were not confirmed. It seems that source text processing in L2 translation can be just as demanding as in L1 translation. The final hypothesis that non-professional translators allocate more cognitive resources for the same translation tasks than do the professionals was partially confirmed. One of the indicators, average fixation duration, indicated higher cognitive effort-related values for professionals.

Keywords: translation processes, eye tracking, cognitive resources, directionality

Procedia PDF Downloads 463
1653 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions

Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez

Abstract:

In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.

Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval

Procedia PDF Downloads 232
1652 Embracing Transculturality by Internationalising the EFL Classroom

Authors: Karen Jacob

Abstract:

Over the last decades, there has been a rise in the use of CLIL (content and language integrated learning) methodology as a way of reinforcing FL (foreign language) acquisition. CLIL techniques have also been transferred to the formal instruction-based FL classroom where through content-based lessons and project work it can very often say that teachers are ‘clilling’ in the FL classroom. When it comes to motivating students to acquire an FL, we have to take into account that English is not your run-of-the-mill FL: English is an international language (EIL). Consequently, this means that EFL students should be able to use English as an international medium of communication. This leads to the assumption that along with FL competence, speakers of EIL will need to become competent international citizens with knowledge of other societies, both contextually and geographically, and be flexible, open-minded, respectful and sensitive towards other world groups. Rather than ‘intercultural’ competence we should be referring to ‘transcultural’ competence. This paper reports the implementation of a content- and task-based approach to EFL teaching which was applied to two groups of 15 year-olds from two schools on the Spanish island of Mallorca during the school year 2015-2016. Students worked on three units of work that aimed at ‘internationalising’ the classroom by introducing topics that would encourage them to become transculturally aware of the world in which they live. In this paper we discuss the feedback given by the teachers and students on various aspects of the approach in order to answer the following research questions: 1) To what extent were the students motivated by the content and activities of the classes?; 2) Did this motivation have a positive effect on the students’ overall results for the subject; 3) Did the participants show any signs of becoming transculturally aware. Preliminary results from qualitative data show that the students enjoyed the move away from the more traditional EFL content and, as a result, they became more competent in speaking and writing. Students also appeared to become more knowledgeable and respectful towards the ‘other’. The EFL approach described in this paper takes a more qualitative approach to research by describing what is really going on in the EFL classroom and makes a conscious effort to provide real examples of not only the acquisition of linguistic competence but also the acquisition of other important communication skills that are of utmost importance in today's international arena.

Keywords: CLIL, content- and task-based learning, internationalisation, transcultural competence

Procedia PDF Downloads 241
1651 Performance Evaluation of Production Schedules Based on Process Mining

Authors: Kwan Hee Han

Abstract:

External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.

Keywords: data mining, event log, process mining, production scheduling

Procedia PDF Downloads 279
1650 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 23
1649 Comparison of Bioelectric and Biomechanical Electromyography Normalization Techniques in Disparate Populations

Authors: Drew Commandeur, Ryan Brodie, Sandra Hundza, Marc Klimstra

Abstract:

The amplitude of raw electromyography (EMG) is affected by recording conditions and often requires normalization to make meaningful comparisons. Bioelectric methods normalize with an EMG signal recorded during a standardized task or from the experimental protocol itself, while biomechanical methods often involve measurements with an additional sensor such as a force transducer. Common bioelectric normalization techniques for treadmill walking include maximum voluntary isometric contraction (MVIC), dynamic EMG peak (EMGPeak) or dynamic EMG mean (EMGMean). There are several concerns with using MVICs to normalize EMG, including poor reliability and potential discomfort. A limitation of bioelectric normalization techniques is that they could result in a misrepresentation of the absolute magnitude of force generated by the muscle and impact the interpretation of EMG between functionally disparate groups. Additionally, methods that normalize to EMG recorded during the task may eliminate some real inter-individual variability due to biological variation. This study compared biomechanical and bioelectric EMG normalization techniques during treadmill walking to assess the impact of the normalization method on the functional interpretation of EMG data. For the biomechanical method, we normalized EMG to a target torque (EMGTS) and the bioelectric methods used were normalization to the mean and peak of the signal during the walking task (EMGMean and EMGPeak). The effect of normalization on muscle activation pattern, EMG amplitude, and inter-individual variability were compared between disparate cohorts of OLD (76.6 yrs N=11) and YOUNG (26.6 yrs N=11) adults. Participants walked on a treadmill at a self-selected pace while EMG was recorded from the right lower limb. EMG data from the soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), and biceps femoris (BF) were phase averaged into 16 bins (phases) representing the gait cycle with bins 1-10 associated with right stance and bins 11-16 with right swing. Pearson’s correlations showed that activation patterns across the gait cycle were similar between all methods, ranging from r =0.86 to r=1.00 with p<0.05. This indicates that each method can characterize the muscle activation pattern during walking. Repeated measures ANOVA showed a main effect for age in MG for EMGPeak but no other main effects were observed. Interactions between age*phase of EMG amplitude between YOUNG and OLD with each method resulted in different statistical interpretation between methods. EMGTS normalization characterized the fewest differences (four phases across all 5 muscles) while EMGMean (11 phases) and EMGPeak (19 phases) showed considerably more differences between cohorts. The second notable finding was that coefficient of variation, the representation of inter-individual variability, was greatest for EMGTS and lowest for EMGMean while EMGPeak was slightly higher than EMGMean for all muscles. This finding supports our expectation that EMGTS normalization would retain inter-individual variability which may be desirable, however, it also suggests that even when large differences are expected, a larger sample size may be required to observe the differences. Our findings clearly indicate that interpretation of EMG is highly dependent on the normalization method used, and it is essential to consider the strengths and limitations of each method when drawing conclusions.

Keywords: electromyography, EMG normalization, functional EMG, older adults

Procedia PDF Downloads 91
1648 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
1647 Combined Use of FMRI and Voxel-Based Morphometry in Assessment of Memory Impairment in Alzheimer's Disease Patients

Authors: A. V. Sokolov, S. V. Vorobyev, A. Yu. Efimtcev, V. Yu. Lobzin, I. A. Lupanov, O. A. Cherdakov, V. A. Fokin

Abstract:

Alzheimer’s disease (AD) is the most common form of dementia. Different brain regions are involved to the pathological process of AD. The purpose of this study was to evaluate brain activation by visual memory task in patients with Alzheimer's disease and determine correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. To investigate the organization of memory and localize cortical areas activated by visual memory task we used functional magnetic resonance imaging and to evaluate brain atrophy of patients with Alzheimer's disease we used voxel-based morphometry. FMRI was performed on 1.5 T MR-scanner Siemens Magnetom Symphony with BOLD (Blood Oxygenation Level Dependent) technique, based on distinctions of magnetic properties of hemoglobin. For test stimuli we used series of 12 not related images for "Baseline" and 12 images with 6 presented before for "Active". Stimuli were presented 3 times with reduction of repeated images to 4 and 2. Patients with Alzheimer's disease showed less activation in hippocampal formation (HF) region and parahippocampal gyrus then healthy persons of control group (p<0.05). The study also showed reduced activation in posterior cingulate cortex (p<0.001). Voxel-based morphometry showed significant atrophy of grey matter in Alzheimer’s disease patients, especially of both temporal lobes (fusiform and parahippocampal gyri); frontal lobes (posterior cingulate and superior frontal gyri). The study showed correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. Thus, reduced activation in hippocampal formation and parahippocampal gyri, in posterior cingulate gyrus in patients with Alzheimer's disease correlates to significant atrophy of these regions, detected by voxel-based morphometry, and to deterioration of specific cognitive functions.

Keywords: Alzheimer’s disease, functional MRI, voxel-based morphometry

Procedia PDF Downloads 320
1646 The Recorded Interaction Task: A Validation Study of a New Observational Tool to Assess Mother-Infant Bonding

Authors: Hannah Edwards, Femke T. A. Buisman-Pijlman, Adrian Esterman, Craig Phillips, Sandra Orgeig, Andrea Gordon

Abstract:

Mother-infant bonding is a term which refers to the early emotional connectedness between a mother and her infant. Strong mother-infant bonding promotes higher quality mother and infant interactions including prolonged breastfeeding, secure attachment and increased sensitive parenting and maternal responsiveness. Strengthening of all such interactions leads to improved social behavior, and emotional and cognitive development throughout childhood, adolescence and adulthood. The positive outcomes observed following strong mother-infant bonding emphasize the need to screen new mothers for disrupted mother-infant bonding, and in turn the need for a robust, valid tool to assess mother-infant bonding. A recent scoping review conducted by the research team identified four tools to assess mother-infant bonding, all of which employed self-rating scales. Thus, whilst these tools demonstrated both adequate validity and reliability, they rely on self-reported information from the mother. As such this may reflect a mother’s perception of bonding with their infant, rather than their actual behavior. Therefore, a new tool to assess mother-infant bonding has been developed. The Recorded Interaction Task (RIT) addresses shortcomings of previous tools by employing observational methods to assess bonding. The RIT focusses on the common interaction between mother and infant of changing a nappy, at the target age of 2-6 months, which is visually recorded and then later assessed. Thirteen maternal and seven infant behaviors are scored on the RIT Observation Scoring Sheet, and a final combined score of mother-infant bonding is determined. The aim of the current study was to assess the content validity and inter-rater reliability of the RIT. A panel of six experts with specialized expertise in bonding and infant behavior were consulted. Experts were provided with the RIT Observation Scoring Sheet, a visual recording of a nappy change interaction, and a feedback form. Experts scored the mother and infant interaction on the RIT Observation Scoring Sheet and completed the feedback form which collected their opinions on the validity of each item on the RIT Observation Scoring Sheet and the RIT as a whole. Twelve of the 20 items on the RIT Observation Scoring Sheet were scored ‘Valid’ by all (n=6) or most (n=5) experts. Two items received a ‘Not valid’ score from one expert. The remainder of the items received a mixture of ‘Valid’ and ‘Potentially Valid’ scores. Few changes were made to the RIT Observation Scoring Sheet following expert feedback, including rewording of items for clarity and the exclusion of an item focusing on behavior deemed not relevant for the target infant age. The overall ICC for single rater absolute agreement was 0.48 (95% CI 0.28 – 0.71). Experts (n=6) ratings were less consistent for infant behavior (ICC 0.27 (-0.01 – 0.82)) compared to mother behavior (ICC 0.55 (0.28 – 0.80)). Whilst previous tools employ self-report methods to assess mother-infant bonding, the RIT utilizes observational methods. The current study highlights adequate content validity and moderate inter-rater reliability of the RIT, supporting its use in future research. A convergent validity study comparing the RIT against an existing tool is currently being undertaken to confirm these results.

Keywords: content validity, inter-rater reliability, mother-infant bonding, observational tool, recorded interaction task

Procedia PDF Downloads 180
1645 Hidden Oscillations in the Mathematical Model of the Optical Binary Phase Shift Keying (BPSK) Costas Loop

Authors: N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev

Abstract:

Nonlinear analysis of the phase locked loop (PLL)-based circuits is a challenging task. Thus, the simulation is widely used for their study. In this work, we consider a mathematical model of the optical Costas loop and demonstrate the limitations of simulation approach related to the existence of so-called hidden oscillations in the phase space of the model.

Keywords: optical Costas loop, mathematical model, simulation, hidden oscillation

Procedia PDF Downloads 440
1644 Affective Transparency in Compound Word Processing

Authors: Jordan Gallant

Abstract:

In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.

Keywords: compound processing, semantic transparency, typed production, valence

Procedia PDF Downloads 127
1643 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation

Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy

Abstract:

A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.

Keywords: cognitive activity, EEG, machine learning, personalized recovery

Procedia PDF Downloads 220
1642 A Current Problem for Steel Bridges: Fatigue Assessment of Seams´ Repair

Authors: H. Pasternak, A. Chwastek

Abstract:

The paper describes the results from a research project about repair of welds. The repair was carried out by grinding the flawed seams and re-welding them. The main task was to determine the FAT classes of original state and after repair of seams according to the assessment procedures, such as nominal, structural and effective notch stress approach. The first part shows the results of the tests, the second part encloses numerical analysis and evaluation of results to determine the fatigue strength classes according to three assessment procedures.

Keywords: cyclic loading, fatigue crack, post-weld treatment, seams’ repair

Procedia PDF Downloads 259
1641 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier

Procedia PDF Downloads 466
1640 A Goms Model for Blind Users Website Navigation

Authors: Suraina Sulong

Abstract:

Keyboard support is one of the main accessibility requirements for web pages and web applications for blind user. But it is not sufficient that the blind user can perform all actions on the page using the keyboard. In addition, designers of web sites or web applications have to make sure that keyboard users can use their pages with acceptable performance. We present GOMS models for navigation in web pages with specific task given to the blind user to accomplish. These models can be used to construct the user model for accessible website.

Keywords: GOMS analysis, usability factor, blind user, human computer interaction

Procedia PDF Downloads 150
1639 Coach-Created Motivational Climate and the Coach-Athlete Relationship

Authors: Kamila Irena Szpunar

Abstract:

The central idea of the study is considered from two perspectives. The first perspective includes the interpersonal relationships formed by coach and athlete. Another perspective is connected with motivational environment which is created by the coach in team. This study will show the interplay between the perceived motivational climate created by the coach and the interpersonal dynamics between coaches and athletes. It is important because it will supply knowledge of the interpersonal conditions that can foster adaptive or maladaptive behavior in sport conditions. It also ensures implications for understanding how the perceived motivational atmosphere in a team is manifested at the level of coach – athlete relationship and interactions. The primary purpose of the study was to identify the association between coach-athlete relationship and athletes' perception of the motivational climate in team sports. The secondary purposes examined the differences between female and male athletes in perceiving of the motivational climate and the coach athlete-relationship. To check coach-athlete relationship Polish translation of The Coach-Athlete Relationship Questionnaire will be used. It measures athletes' perceptions of coach- athlete relationship defined by 3+1 Cs conceptual model of the coach-athlete relationship. From this model were used three constructs such as closeness (feelings of trust, respect etc.), commitment (thoughts about the future of the relationship), and complementarity (co-operative interactions during practice sessions). To check perceived motivational climate will be used Polish translation of The Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2). PMCSQ-2 was created to assess athletes' perceptions of the motivational climates in their teams. The questionnaire includes two general dimensions, the perceived task-involving climate and the perceived ego-involving climate; each contains three subscales. To check the associations between elements the motivational climate and coach-athlete relationship was used canonical correlation analysis. Student's t-test was used to check gender differences in athletes' perceptions of the motivational climate and the coach-athlete relationship. The findings suggest that in Polish athletes' perceptions of the coach-athlete relationship have motivational significance and that there are gender differences between female and male athletes in both variables – coach-athlete relationship and kind of motivational climate. According to the author's knowledge, such kind of study has not been conducted in Polish conditions before and is the first study on the subject of the motivational climate and the coach-athlete relationship in Poland. Information from this study can be useful for the development of interventions for enhancing the quality of coach- athlete relationship and its associated outcomes connected with motivational climate.

Keywords: coach-athlete relationship, ego-involving climate, motivational climate, task-involving climate

Procedia PDF Downloads 198
1638 English is Not Going to the Dog (E): Rising Fame of Doge Speak

Authors: Beata, Bury

Abstract:

Doge speak is an Internet variety with its own linguistic patterns and regularities. Doge meme contains some unconventional grammar rules which make it recognizable. With the use of doge corpus, certain characteristics of doge speak as well as reasons for its popularity are analyzed. The study concludes that doge memes can be applied to a variety of situations, for instance advertising or fashion industry. Doge users play with language and create surprising linguistic combinations. To sum up, doge meme making is a multiperson task. Doge users predict and comment on the world with the use of doge memes.

Keywords: dogespeak, internet language, language play, meme

Procedia PDF Downloads 478
1637 Application of Self-Efficacy Theory in Counseling Deaf and Hard of Hearing Students

Authors: Nancy A. Delich, Stephen D. Roberts

Abstract:

This case study explores using self-efficacy theory in counseling deaf and hard of hearing students in one California school district. Self-efficacy is described as the confidence a student has for performing a set of skills required to succeed at a specific task. When students need to learn a skill, self-efficacy can be a major factor in influencing behavioral change. Self-efficacy is domain specific, meaning that students can have high confidence in their abilities to accomplish a task in one domain, while at the same time having low confidence in their abilities to accomplish another task in a different domain. The communication isolation experienced by deaf and hard of hearing children and adolescents can negatively impact their belief about their ability to navigate life challenges. There is a need to address issues that impact deaf and hard of hearing students’ social-emotional development. Failure to address these needs may result in depression, suicidal ideation, and anxiety among other mental health concerns. Self-efficacy training can be used to address these socio-emotional developmental issues with this population. Four sources of experiences are applied during an intervention: (a) enactive mastery experience, (b) vicarious experience, (c) verbal persuasion, and (d) physiological and affective states. This case study describes the use of self-efficacy training with a coed group of 12 deaf and hard of hearing high school students who experienced bullying at school. Beginning with enactive mastery experience, the counselor introduced the topic of bullying to the group. The counselor educated the students about the different types of bullying while teaching them the terminology, signs and their meanings. The most effective way to increase self-efficacy is through extensive practice. To better understand these concepts, the students practiced through role-playing with the goal of developing self-advocacy skills. Vicarious experience is the perception that students have about their capabilities. Viewing other students advocating for themselves, cognitively rehearsing what actions they will and will not take, and teaching each other how to stand up against bullying can strengthen their belief in successfully overcoming bullying. The third source of self-efficacy beliefs is verbal persuasion. It occurs when others express belief in the capabilities of the student. Didactic training and pedagogic materials on bullying were employed as part of the group counseling sessions. The fourth source of self-efficacy appraisals is physiological and affective states. Students expect positive emotions to be associated with successful skilled performance. When students practice new skills, the counselor can apply several strategies to enhance self-efficacy while reducing and controlling emotional and physical states. The intervention plan incorporated all four sources of self-efficacy training during several interactive group sessions regarding bullying. There was an increased understanding around the issues of bullying, resulting in the students’ belief of their ability to perform protective behaviors and deter future occurrences. The outcome of the intervention plan resulted in a reduction of reported bullying incidents. In conclusion, self-efficacy training can be an effective counseling and teaching strategy in addressing and enhancing the social-emotional functioning with deaf and hard of hearing adolescents.

Keywords: counseling, self-efficacy, bullying, social-emotional development, mental health, deaf and hard of hearing students

Procedia PDF Downloads 352
1636 Neurodiversity in Post Graduate Medical Education: A Rapid Solution to Faculty Development

Authors: Sana Fatima, Paul Sadler, Jon Cooper, David Mendel, Ayesha Jameel

Abstract:

Background: Neurodiversity refers to intrinsic differences between human minds and encompasses dyspraxia, dyslexia, attention deficit hyperactivity disorder, dyscalculia, autism spectrum disorder, and Tourette syndrome. There is increasing recognition of neurodiversity in relation to disability/diversity in medical education and the associated impact on training, career progression, and personal and professional wellbeing. In addition, documented and anecdotal evidence suggests that medical educators and training providers in all four nations (UK) are increasingly concerned about understanding neurodiversity and identifying and providing support for neurodivergent trainees. Summary of Work: A national Neurodiversity Task and Finish group were established to survey Health Education England local office Professional Support teams about insights into infrastructure, training for educators, triggers for assessment, resources, and intervention protocols. This group drew from educational leadership, professional and personal neurodiverse expertise, occupational medicine, employer human resource, and trainees. An online, exploratory survey was conducted to gather insights from supervisors and trainers across England using the Professional Support Units' platform. Summary of Results: This survey highlighted marked heterogeneity in the identification, assessment, and approaches to support and management of neurodivergent trainees and highlighted a 'deficit' approach to neurodiversity. It also demonstrated a paucity of educational and protocol resources for educators and supervisors in supporting neurodivergent trainees. Discussions and Conclusions: In phase one, we focused on faculty development. An educational repository for all supervising trainees using a thematic approach was formalised. This was guided by our survey findings specific for neurodiversity and took a triple 'A' approach: awareness, assessment, and action. This is further supported by video material incorporating stories in training as well as mobile workshops for trainers for more immersive learning. The subtle theme from both the survey and Task and finish group suggested a move away from deficit-focused methods toward a positive holistic, interdisciplinary approach within a biopsychosocial framework. Contributions: 1. Faculty Knowledge and basic understanding of neurodiversity are key to supporting trainees with known or underlying Neurodiverse conditions. This is further complicated by challenges around non-disclosure, varied presentations, stigma, and intersectionality. 2. There is national (and international) inconsistency in the approach to how trainees are managed once a neurodiverse condition is suspected or diagnosed. 3. A carefully constituted and focussed Task and Finish group can rapidly identify national inconsistencies in neurodiversity and implement rapid educational interventions. 4. Nuanced findings from surveys and discussion can reframe the approach to neurodiversity; from a medical model to a more comprehensive, asset-based, biopsychosocial model of support, fostering a cultural shift, accepting 'diversity' in all its manifestations, visible and hidden.

Keywords: neurodiversity, professional support, human considerations, workplace wellbeing

Procedia PDF Downloads 91
1635 Operations Training Using Immersive Technologies: A Development Experience

Authors: A. Aman, S. M. Tang, F. H. Alharrassy

Abstract:

Omanisation was established to increase job opportunities for national employment in Sultanate of Oman. With half of the population below 25 years of age, the sultanate is striving to diversify the economy fast enough to meet the burgeoning number of jobseekers annually. On the other hand, training personnel to be competent oil and gas operators and technicians is a difficult task in a complex reservoir structures in Oman using highly advanced and sophisticated extracting processes. Coupled towards Omanisation which encourages nationals into the oil and gas sector so as to create sustainable employment for the local population, the challenge to churn out competent manpower became a daunting task. Immersive technologies provided the impetus to create a new digital media sector which provided job opportunities as well as the learning contents to enhance the competency-based training for the oil and gas sector in the Sultanate. This lead to a win-win-win collaboration amongst the government represented by the Information Technology Authority (ITA), private sector specialised company (represented by ASM Technologies), jobseekers and oil and gas organisations. This is also one of the first private-public partnership model in the Information Communication Technology (ICT) sector in Oman. A pilot phase was conducted for 8 months to develop four virtual applications for training in equipment and process engineering; oil rig familiarisation, Health Safety Environment (HSE) application, turbine application and the mechanical vapour compressor (MVC) water recycling plant in order to enhance the competency level of the trainees. The immersive applications were installed in operational settings which enabled new employees to practice and understand various processes and procedures regarding enhanced oil recovery. Existing employees used the application to review the working principles in order to carry out troubleshooting scenarios. Concurrently, these applications were also developed by local Omani resources within the country. This created job opportunities for job-seekers as well the establishment of a digital media sector. The purpose of this paper is to discuss how immersive technologies can enhance operational competencies, create job and establish a digital media sector in the Sultanate of Oman.

Keywords: immersive, virtual reality, operations training, Omanisation

Procedia PDF Downloads 230
1634 Cognitive Performance and Physiological Stress during an Expedition in Antarctica

Authors: Andrée-Anne Parent, Alain-Steve Comtois

Abstract:

The Antarctica environment can be a great challenge for human exploration. Explorers need to be focused on the task and require the physical abilities to succeed and survive in complete autonomy in this hostile environment. The aim of this study was to observe cognitive performance and physiological stress with a biomarker (cortisol) and hand grip strength during an expedition in Antarctica. A total of 6 explorers were in complete autonomous exploration on the Forbidden Plateau in Antarctica to reach unknown summits during a 30 day period. The Stroop Test, a simple reaction time, and mood scale (PANAS) tests were performed every week during the expedition. Saliva samples were taken before sailing to Antarctica, the first day on the continent, after the mission on the continent and on the boat return trip. Furthermore, hair samples were taken before and after the expedition. The results were analyzed with SPSS using ANOVA repeated measures. The Stroop and mood scale results are presented in the following order: 1) before sailing to Antarctica, 2) the first day on the continent, 3) after the mission on the continent and 4) on the boat return trip. No significant difference was observed with the Stroop (759±166 ms, 850±114 ms, 772±179 ms and 833±105 ms, respectively) and the PANAS (39.5 ±5.7, 40.5±5, 41.8±6.9, 37.3±5.8 positive emotions, and 17.5±2.3, 18.2±5, 18.3±8.6, 15.8±5.4 negative emotions, respectively) (p>0.05). However, there appears to be an improvement at the end of the second week. Furthermore, the simple reaction time was significantly lower at the end of the second week, a moment where important decisions were taken about the mission, vs the week before (416±39 ms vs 459.8±39 ms respectively; p=0.030). Furthermore, the saliva cortisol was not significantly different (p>0.05) possibly due to important variations and seemed to reach a peak on the first day on the continent. However, the cortisol from the hair pre and post expedition increased significantly (2.4±0.5 pg/mg pre-expedition and 16.7±9.2 pg/mg post-expedition, p=0.013) showing important stress during the expedition. Moreover, no significant difference was observed on the grip strength except between after the mission on the continent and after the boat return trip (91.5±21 kg vs 85±19 kg, p=0.20). In conclusion, the cognitive performance does not seem to be affected during the expedition. Furthermore, it seems to increase for specific important events where the crew seemed to focus on the present task. The physiological stress does not seem to change significantly at specific moments, however, a global pre-post mission measure can be important and for this reason, for long-term missions, a pre-expedition baseline measure is important for crewmembers.

Keywords: Antarctica, cognitive performance, expedition, physiological adaptation, reaction time

Procedia PDF Downloads 243
1633 Young Children’s Use of Representations in Problem Solving

Authors: Kamariah Abu Bakar, Jennifer Way

Abstract:

This study investigated how young children (six years old) constructed and used representations in mathematics classroom; particularly in problem solving. The purpose of this study is to explore the ways children used representations in solving addition problems and to determine whether their representations can play a supportive role in understanding the problem situation and solving them correctly. Data collection includes observations, children’s artifact, photographs and conversation with children during task completion. The results revealed that children were able to construct and use various representations in solving problems. However, they have certain preferences in generating representations to support their problem solving.

Keywords: young children, representations, addition, problem solving

Procedia PDF Downloads 461
1632 Educase–Intelligent System for Pedagogical Advising Using Case-Based Reasoning

Authors: Elionai Moura, José A. Cunha, César Analide

Abstract:

This work introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.

Keywords: case-based reasoning, pedagogical advising, educational data-mining (EDM), machine learning

Procedia PDF Downloads 420
1631 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection

Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld

Abstract:

In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.

Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation

Procedia PDF Downloads 264
1630 Relevant LMA Features for Human Motion Recognition

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.

Keywords: discriminative LMA features, features reduction, human motion recognition, random forest

Procedia PDF Downloads 195
1629 Baring Witness, Bearing Withness: Paradoxes of Testimony in J.M. Coetzee’s Waiting for the Barbarians

Authors: Alexandra Sweny

Abstract:

This paper contends with the intersection between the act of witnessing and the act of reading in order to consider the relevance of literary testimony and fiction as tools for postcolonial readings of history. J. M. Coetzee's Waiting for the Barbarians elucidates what Primo Levi deems the 'paradoxical' task of testimony: that suffering can only be fully narrated by the sufferer themselves, whose voice and narrative capacity is often foreclosed by the very extent of their trauma. By examining the fictional Magistrate's position as both a reader and translator of history, this paper posits Waiting for the Barbarians as an ethical command against the appropriation of trauma.

Keywords: ethical criticism, limit-experience, postcolonialism, psychic trauma in literature, testimony

Procedia PDF Downloads 150
1628 A Comparison between Different Segmentation Techniques Used in Medical Imaging

Authors: Ibtihal D. Mustafa, Mawia A. Hassan

Abstract:

Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.

Keywords: MRI, segmentation, correlation, structural similarity

Procedia PDF Downloads 410
1627 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 309
1626 Practical Experiences as Part of Project Management Course

Authors: H. Hussain, N. H. Mohamad

Abstract:

Practical experiences have been one of the successful criteria for the Project Management course for the art and design students. There are series of events that the students have to undergo as part of their practical exercises in the learning context for Project Management courses. These series have been divided into few mini programs that involved the whole individual in each group. Therefore, the events have been one of the bench marks for these students. Through the practical experience, the task that has been given to individual has been performed according to the needs of professional practice and ethics.

Keywords: practical experience, project management, art and design students, events, programs

Procedia PDF Downloads 556
1625 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 464