Search results for: emotion mining
1036 Mental Health Difficulties and Abnormal Feeding Regulation during a Crisis: A Mixed-Methods Approach
Authors: Leja Salciute
Abstract:
Mental health difficulties are one of the reasons for abnormal feeding behaviour. This is especially evident in a crisis situation. Abnormal feeding behaviour occurs when individuals use food as a method to provide relief for these negative emotions. The study aimed to discover an association between emotional regulation, mental health difficulties and disruption in feeding behaviours in the UK in times of crisis. A mixed-methods design was used. Abnormal feeding behaviour was measured using the Binge Eating Disorder Screener-7, SCOFF scale, Crisis impact scale, Difficulties in Emotion Regulation Scale and demographics. The sample comprised 342 participants with a history of excessive overeating. The participants (male= 198, female= 141 and other= 3) came from the general population and they were aged 16 and over. Participants ranged in age from 16 to 89. Findings from the survey concluded that difficulties with emotion regulation were found to be associated with abnormal feeding behaviours. Mental health difficulties correlated significantly with changes in individuals’ lives, such as work or routines. Individuals differed in their abnormal feeding behaviour in terms of their age, that is, younger individuals showed less struggle with their eating patterns while older individuals faced greater struggles with their abnormal feeding behaviour. Emotion regulation significantly influenced abnormal feeding behaviour. Results from qualitative data suggest four common themes that were identified: demonstration of gratitude, negative emotions, disruptions to social life, and financial loss. For example, participants developed and gained an awareness of being grateful for the simple things in life even when participants experienced hardships. The results also suggested that emotional eating acted like a sedative that allowed the participant to run away from their painful reality. Crisis situation negatively affected relationships among participants and induced negativity related to social interaction. Finally, the respondents highlighted that the presence of uncertainty made it hard to plan ahead and look forward to the future. Although respondents experienced negative emotions and financial losses, some of them still managed to allocate time for themselves and enjoy their time off during crisis. However, majority of respondents referred to their inability to control their external circumstances and turned to and relied upon food overconsumption instead. This had a negative effect on their mental health and presented disruptions in feeding behaviour. It was recommended for individuals in times of crisis to seek psychological support in the form of Cognitive Behavioural Therapy (CBT).Keywords: binge eating, maladaptive eating behaviours, mental health, negative emotions in crisis
Procedia PDF Downloads 711035 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia
Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan
Abstract:
The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)
Procedia PDF Downloads 3041034 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 4171033 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga
Authors: M. F. Mamabolo
Abstract:
Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.Keywords: Kaap river system, mines, heavy metals, sulphate
Procedia PDF Downloads 811032 Statistical Analysis to Select Evacuation Route
Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim
Abstract:
Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route
Procedia PDF Downloads 5041031 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: data mining, data science, trajectory, animal behavior
Procedia PDF Downloads 1441030 Exploration of RFID in Healthcare: A Data Mining Approach
Authors: Shilpa Balan
Abstract:
Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.Keywords: RFID, data mining, data analysis, healthcare
Procedia PDF Downloads 2331029 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample
Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos
Abstract:
Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD
Procedia PDF Downloads 1581028 Seasonal Variation of the Impact of Mining Activities on Ga-Selati River in Limpopo Province, South Africa
Authors: Joshua N. Edokpayi, John O. Odiyo, Patience P. Shikwambana
Abstract:
Water is a very rare natural resource in South Africa. Ga-Selati River is used for both domestic and industrial purposes. This study was carried out in order to assess the quality of Ga-Selati River in a mining area of Limpopo Province-Phalaborwa. The pH, Electrical Conductivity (EC) and Total Dissolved Solids (TDS) were determined using a Crinson multimeter while turbidity was measured using a Labcon Turbidimeter. The concentrations of Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Na and Pb were analysed in triplicate using a Varian 520 flame atomic absorption spectrometer (AAS) supplied by PerkinElmer, after acid digestion with nitric acid in a fume cupboard. The average pH of the river from eight different sampling sites was 8.00 and 9.38 in wet and dry season respectively. Higher EC values were determined in the dry season (138.7 mS/m) than in the wet season (96.93 mS/m). Similarly, TDS values were higher in dry (929.29 mg/L) than in the wet season (640.72 mg/L) season. These values exceeded the recommended guideline of South Africa Department of Water Affairs and Forestry (DWAF) for domestic water use (70 mS/m) and that of the World Health Organization (WHO) (600 mS/m), respectively. Turbidity varied between 1.78-5.20 and 0.95-2.37 NTU in both wet and dry seasons. Total hardness of 312.50 mg/L and 297.75 mg/L as the concentration of CaCO3 was computed for the river in both the wet and the dry seasons and the river water was categorised as very hard. Mean concentration of the metals studied in both the wet and the dry seasons are: Na (94.06 mg/L and 196.3 mg/L), K (11.79 mg/L and 13.62 mg/L), Ca (45.60 mg/L and 41.30 mg/L), Mg (48.41 mg/L and 44.71 mg/L), Al (0.31 mg/L and 0.38 mg/L), Cd (0.01 mg/L and 0.01 mg/L), Cr (0.02 mg/L and 0.09 mg/L), Pb (0.05 mg/L and 0.06 mg/L), Mn (0.31 mg/L and 0.11 mg/L) and Fe (0.76 mg/L and 0.69 mg/L). Results from this study reveal that most of the metals were present in concentrations higher than the recommended guidelines of DWAF and WHO for domestic use and the protection of aquatic life.Keywords: contamination, mining activities, surface water, trace metals
Procedia PDF Downloads 3171027 Examining the Relations among Autobiographical Memory Recall Types, Quality of Descriptions, and Emotional Arousal in Psychotherapy for Depression
Authors: Jinny Hong, Jeanne C. Watson
Abstract:
Three types of autobiographical memory recall -specific, episodic, and generic- were examined in relation to the quality of descriptions and in-session levels of emotional arousal. Correlational analyses and general estimating equation were conducted to test the relationships between 1) quality of descriptions and type of memory, 2) type of memory and emotional arousal, and 3) quality of descriptions and emotional arousal. The data was transcripts drawn from an archival randomized-control study comparing cognitive-behavioral therapy and emotion-focused therapy in a 16-week treatment for depression. Autobiographical memory recall segments were identified and sorted into three categories: specific, episodic, and generic. Quality of descriptions of these segments was then operationalized and measured using the Referential Activity Scale, and each memory segment was rated on four dimensions: concreteness, specificity, clarity, and overall imagery. Clients’ level of emotional arousal for each recall was measured using the Client’s Expression Emotion Scale. Contrary to the predictions, generic memories are associated with higher emotional arousal ratings and descriptive language ratings compared to specific memories. However, a positive relationship emerged between the quality of descriptions and expressed emotional arousal, indicating that the quality of descriptions in which memories are described in sessions is more important than the type of memory recalled in predicting clients’ level of emotional arousal. The results from this study provide a clearer understanding of the role of memory recall types and use of language in activating emotional arousal in psychotherapy sessions in a depressed sample.Keywords: autobiographical memory recall, emotional arousal, psychotherapy for depression, quality of descriptions, referential activity
Procedia PDF Downloads 1621026 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries have gained attention and implemented for this application. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: recommendation, user profile, data mining, web and mobile technology
Procedia PDF Downloads 3131025 Risk and Emotion: Measuring the Effect of Emotion and Other Visceral Factors on Decision Making under Risk
Authors: Michael Mihalicz, Aziz Guergachi
Abstract:
Background: The science of modelling choice preferences has evolved over centuries into an interdisciplinary field contributing to several branches of Microeconomics and Mathematical Psychology. Early theories in Decision Science rested on the logic of rationality, but as it and related fields matured, descriptive theories emerged capable of explaining systematic violations of rationality through cognitive mechanisms underlying the thought processes that guide human behaviour. Cognitive limitations are not, however, solely responsible for systematic deviations from rationality and many are now exploring the effect of visceral factors as the more dominant drivers. The current study builds on the existing literature by exploring sleep deprivation, thermal comfort, stress, hunger, fear, anger and sadness as moderators to three distinct elements that define individual risk preference under Cumulative Prospect Theory. Methodology: This study is designed to compare the risk preference of participants experiencing an elevated affective or visceral state to those in a neutral state using nonparametric elicitation methods across three domains. Two experiments will be conducted simultaneously using different methodologies. The first will determine visceral states and risk preferences randomly over a two-week period by prompting participants to complete an online survey remotely. In each round of questions, participants will be asked to self-assess their current state using Visual Analogue Scales before answering a series of lottery-style elicitation questions. The second experiment will be conducted in a laboratory setting using psychological primes to induce a desired state. In this experiment, emotional states will be recorded using emotion analytics and used a basis for comparison between the two methods. Significance: The expected results include a series of measurable and systematic effects on the subjective interpretations of gamble attributes and evidence supporting the proposition that a portion of the variability in human choice preferences unaccounted for by cognitive limitations can be explained by interacting visceral states. Significant results will promote awareness about the subconscious effect that emotions and other drive states have on the way people process and interpret information, and can guide more effective decision making by informing decision-makers of the sources and consequences of irrational behaviour.Keywords: decision making, emotions, prospect theory, visceral factors
Procedia PDF Downloads 1491024 Effects of Major and Minor Modes to Emotional Perceptions of 'Happy' and 'Sad' in Piano Music among Students Aged 9-17
Authors: Nurezlin Mohd Azib, Pan Kok Chang
Abstract:
This quantitative study investigates the effects of major and minor modes, and contributing musical parameter of tempo, to the emotional perceptions of ‘happy’ and ‘sad’ in piano music among subjects aged 9-17 years old. The study was conducted in two phases; survey-questionnaire, and listening activity. Subjects (N=31) were sampled from piano music students’ population in Bangi, Selangor. In the survey-questionnaire, subjects answered 20 questions on demographic characteristics, music listening and preference, and understanding of emotional perception in music. In the listening activity, subjects listened to 20 untitled piano music excerpts and rated the emotion perceived for each excerpt, whether ‘happy’ or ‘sad’. Results from survey-questionnaire show that most percentage of subjects are 11 years old, in Grade 1, of 3 years of learning piano, prefer classical music, always listen to music, prefer both major and minor modes’ music, and find it easy to understand emotion in music, as well as major and minor modes. Results from listening activity show that 60 % of major mode music are perceived as ‘major-happy’, while 60 % too, of minor mode music are perceived as ‘minor-sad’. However, Chi-square test of independence statistical analysis indicates that there are no association and significant relationship between modes (major and minor) and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 0.80, p = 0.371), at the significance level of p ≤ 0.05. Contrastingly, there are association and significant relationship between tempo (fast and slow), and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 9.899, p = 0.005). Therefore, it is concluded that tempo plays an important role in effects of major and minor mode to ‘happy’ and ‘sad’ emotional perceptions in piano music among subjects aged 9 to 17 in this study.Keywords: effects, emotional perceptions, major and minor modes, piano music
Procedia PDF Downloads 2161023 Mining User-Generated Contents to Detect Service Failures with Topic Model
Authors: Kyung Bae Park, Sung Ho Ha
Abstract:
Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization
Procedia PDF Downloads 1871022 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 1061021 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data
Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee
Abstract:
Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.Keywords: data mining, evaluating new technology, technology opportunity, patent analysis
Procedia PDF Downloads 3771020 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 5171019 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2961018 The Double Standard: Ethical Issues and Gender Discrimination in Traditional Western Ethics
Authors: Merina Islam
Abstract:
The feminists have identified the traditional western ethical theories as basically male centered. Feminists are committed to develop a critique showing how the traditional western ethics together with traditional philosophy, irrespective of the claim for gender neutrality, all throughout remained gender-biased. This exclusion of women’s experiences from the moral discourse is justified on the ground that women cannot be moral agents, since they are not rational. By way of entailment, we are thus led to the position that virtues of traditional ethics, so viewed, can nothing but rational and hence male. The ears of traditional Western ethicists have been attuned to male rather than female ethical voices. Right from the Plato, Aristotle, Augustine, Aquinas, Rousseau, Kant, Hegel and even philosophers like Freud, Schopenhauer, Nietzsche and many others the dualism between reason-passion or mind and body started gaining prominence. These, according to them, have either intentionally excluded women or else have used certain male moral experience as the standard for all moral experiences, thereby resulting once again in exclusion of women’s experiences. Men are identified with rationality and hence contrasted with women whose sphere is believed to be that of emotion and feeling. This act of exclusion of women’s experience from moral discourse has given birth to a tradition that emphasizes reason over emotion, universal over the particular, and justice over caring. That patriarchy’s use of gender distinctions in the realm of Ethics has resulted in gender discriminations is an undeniable fact. Hence women’s moral agency is said to have often been denied, not simply by the act of exclusion of women from moral debate or sheer ignorance of their contributions, but through philosophical claims to the effect that women lack moral reason. Traditional or mainstream ethics cannot justify its claim for universality, objectivity and gender neutrality the standards from which were drawn the legitimacy of the various moral maxims or principles of it. Right from the Platonic and Aristotelian period the dualism between reason-passion or mind and body started gaining prominence. Men are identified with rationality and hence contrasted with women whose sphere is believed to be that of emotion and feeling. Through the Association of the masculine values with reason (the feminine with irrational), was created the standard prototype of moral virtues The feminists’ critique of the traditional mainstream Ethics is based on this charge that because of its inherent gender bias, in the name of gender distinctions, Ethics has so far been justifying discriminations. In this paper, attempt would make upon the gender biased-ness of traditional ethics. But Feminists are committed to develop a critique showing how the traditional ethics together with traditional philosophy, irrespective of the claim for gender neutrality, all throughout remained gender-biased. We would try to show to what extent traditional ethics is male centered and consequentially fails to justify its claims for universality and gender neutrality.Keywords: ethics, gender, male-centered, traditional
Procedia PDF Downloads 4271017 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining
Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture
Procedia PDF Downloads 2831016 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake
Authors: Minami Ito, Akihiro Iijima
Abstract:
On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster
Procedia PDF Downloads 2201015 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 881014 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3391013 Implementation of Dozer Push Measurement under Payment Mechanism in Mining Operation
Authors: Anshar Ajatasatru
Abstract:
The decline of coal prices over past years have been significantly increasing the awareness of effective mining operation. A viable step must be undertaken in becoming more cost competitive while striving for best mining practice especially at Melak Coal Mine in East Kalimantan, Indonesia. This paper aims to show how effective dozer push measurement method can be implemented as it is controlled by contract rate on the unit basis of USD ($) per bcm. The method emerges from an idea of daily dozer push activity that continually shifts the overburden until final target design by mine planning. Volume calculation is then performed by calculating volume of each time overburden is removed within determined distance using cut and fill method from a high precision GNSS system which is applied into dozer as a guidance to ensure the optimum result of overburden removal. Accumulation of daily to weekly dozer push volume is found 95 bcm which is multiplied by average sell rate of $ 0,95, thus the amount monthly revenue is $ 90,25. Furthermore, the payment mechanism is then based on push distance and push grade. The push distance interval will determine the rates that vary from $ 0,9 - $ 2,69 per bcm and are influenced by certain push slope grade from -25% until +25%. The amount payable rates for dozer push operation shall be specifically following currency adjustment and is to be added to the monthly overburden volume claim, therefore, the sell rate of overburden volume per bcm may fluctuate depends on the real time exchange rate of Jakarta Interbank Spot Dollar Rate (JISDOR). The result indicates that dozer push measurement can be one of the surface mining alternative since it has enabled to refine method of work, operating cost and productivity improvement apart from exposing risk of low rented equipment performance. In addition, payment mechanism of contract rate by dozer push operation scheduling will ultimately deliver clients by almost 45% cost reduction in the form of low and consistent cost.Keywords: contract rate, cut-fill method, dozer push, overburden volume
Procedia PDF Downloads 3161012 Fake News Detection for Korean News Using Machine Learning Techniques
Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.Keywords: fake news detection, Korean news, machine learning, text mining
Procedia PDF Downloads 2751011 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation
Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang
Abstract:
With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior
Procedia PDF Downloads 7801010 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur
Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille
Abstract:
The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur
Procedia PDF Downloads 1231009 Emotional State and Cognitive Workload during a Flight Simulation: Heart Rate Study
Authors: Damien Mouratille, Antonio R. Hidalgo-Muñoz, Nadine Matton, Yves Rouillard, Mickael Causse, Radouane El Yagoubi
Abstract:
Background: The monitoring of the physiological activity related to mental workload (MW) on pilots will be useful to improve aviation safety by anticipating human performance degradation. The electrocardiogram (ECG) can reveal MW fluctuations due to either cognitive workload or/and emotional state since this measure exhibits autonomic nervous system modulations. Arguably, heart rate (HR) is one of its most intuitive and reliable parameters. It would be particularly interesting to analyze the interaction between cognitive requirements and emotion in ecologic sets such as a flight simulator. This study aims to explore by means of HR the relation between cognitive demands and emotional activation. Presumably, the effects of cognition and emotion overloads are not necessarily cumulative. Methodology: Eight healthy volunteers in possession of the Private Pilot License were recruited (male; 20.8±3.2 years). ECG signal was recorded along the whole experiment by placing two electrodes on the clavicle and left pectoral of the participants. The HR was computed within 4 minutes segments. NASA-TLX and Big Five inventories were used to assess subjective workload and to consider the influence of individual personality differences. The experiment consisted in completing two dual-tasks of approximately 30 minutes of duration into a flight simulator AL50. Each dual-task required the simultaneous accomplishment of both a pre-established flight plan and an additional task based on target stimulus discrimination inserted between Air Traffic Control instructions. This secondary task allowed us to vary the cognitive workload from low (LC) to high (HC) levels, by combining auditory and visual numerical stimuli to respond to meeting specific criteria. Regarding emotional condition, the two dual-tasks were designed to assure analogous difficulty in terms of solicited cognitive demands. The former was realized by the pilot alone, i.e. Low Arousal (LA) condition. In contrast, the latter generates a high arousal (HA), since the pilot was supervised by two evaluators, filmed and involved into a mock competition with the rest of the participants. Results: Performance for the secondary task showed significant faster reaction times (RT) for HA compared to LA condition (p=.003). Moreover, faster RT was found for LC compared to HC (p < .001) condition. No interaction was found. Concerning HR measure, despite the lack of main effects an interaction between emotion and cognition is evidenced (p=.028). Post hoc analysis showed smaller HR for HA compared to LA condition only for LC (p=.049). Conclusion. The control of an aircraft is a very complex task including strong cognitive demands and depends on the emotional state of pilots. According to the behavioral data, the experimental set has permitted to generate satisfactorily different emotional and cognitive levels. As suggested by the interaction found in HR measure, these two factors do not seem to have a cumulative impact on the sympathetic nervous system. Apparently, low cognitive workload makes pilots more sensitive to emotional variations. These results hint the independency between data processing and emotional regulation. Further physiological data are necessary to confirm and disentangle this relation. This procedure may be useful for monitoring objectively pilot’s mental workload.Keywords: cognitive demands, emotion, flight simulator, heart rate, mental workload
Procedia PDF Downloads 2751008 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects
Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town
Abstract:
The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry
Procedia PDF Downloads 921007 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 402